Metagraphics
C/C++ Programming Guidelines

Version 4.3 — January 3, 2002

Copyright © 1999-2002 Metagraphics Corporation

Metagraphics Corporation

PO Box 225

Woodinville, WA 98072

Phone: 425-844-1110

Fax: 425-844-1112

Web: http://www.metagraphics.com

Document: http://www.metagraphics.com/pubs/MetagraphicsCodingGuide.pdf (.doc)

Author: Jack Davis <jack@metagraphics.com>
Email: support@metagraphics.com

Metagraphics Programming Guidelines

http://www.metagraphics.com/
http://www.metagraphics.com/pubs/MetagraphicsCodingGuide.pdf
mailto:jack@metagraphics.com
mailto:support@metagraphics.com

CONTENTS

1 NaMiNG CONVENTIONS ..uiireeeeussiiinmmmssnsmsssiimssnnsssssssssssssssssssssssssmmmsssssssssssssmmnsssssssssssmsmsssssssssssssmsmssssnsnnns 1
1.1 Use CommMON WOId NAMEScevrruuieeiirrrrrrnssssssssersssssssessserrsssssssssssnrsssssssssssennsssssssesseennssssssssssseneesennnnnns 1
1.2 If YOU MUSE USE HUNGAIAN... . iiiieiiiiieeiieecceiiis s s s e e s e e s s s e e aaes s e s s s e e e s e e s e s e e en s s s e e e s e e nrnnnaneeaneeeeeenrnnnnn 1

HUNGAMAN PreafiXES. et ieeiieiiiee i e e e e e e e e e e e e e eeaaaaaaaeaaaeaees 2

Y 03T = PR 2

1.3 TYPES & CONSLANTS ...evteeiiiriiiiiiitiietriastiestisrbsr s e e e e e snnssnnrnnnes 2
B 0 151 = L KR T 1= Vo o1 2
Constants — Use enum or const INstead Of #define iiiviiiiiieiiieiieeerieireerieereeereeeeeeeeeeeeeeeerreeerrerreerreernee 2

Macros — Use inline Instead of #define for FUNCHON MaACrOScccovveiieiiiiiiin e, 3
#define CONSANTS AN MACIOS.....cuvuruuiiiiiiiirrrriaes s iserrrrr s e s s e e e rrrr s e e s s e rrrsaa s s e e s e rrr s aaessseerrnsnnseenennnes 3

8RS - T =1 o)1= PP O PO P PRPPPUPPRRPPRPRS 4
L€ o] o T= I = 4 =] =PRI 4

MeMDBEr Vari@bleScooiieeiie e a e e 4

SEAtIC Vari@bleS ... aaaaaaaaaaaaaaaaaes 4

Lo Trs | IV g T= o] =PRIt 4
LW o T I AN 11] 0 =T o | £ PPN 4

1.6 FUNCEION QN ClaSS NAMESevurrrrrerrurrrenrrnnrrunrrnnrrnrrrnnrsnsssnssssssssssssssssssssssssssanssassassnaannaanaaaaarrrrnssrnsssnnns 4
Avoid Microsoft and ANSL C NAMES......uuuuuuuuuuuiirrssss s ssssss s s s s sss s se s s s e s s e e s s e e s s e e s s e e s e e s s e e e e e e e neeeeeeeessnnnannan 5

L@V o) Tor=1 o o I 0T o ol o] o =3P 5

(ORI o] =1 VA ¥ g Tt uTo) o L3PPSO PPPPPPPP 5

(O Yo o] [Tor= Lol g T 11T POUPPP PP 5

(O I o = VO = =T TP 5

(O O = Tt 1= g o T 3P PPT 6

T .4 0 1= 7 PPN 6
2 BaSIC DAta TYPES «ureuuirmuuimnmmimnesinnssmnesssnsssmnsssmssssmssssnssssnsssmsssssssssmssssnssssssssssssssssssnssssnsssssssssssnasssnnsssnnsss 6
Variable SiZe Data TYPESuuueereriiiriiiirrrrrieaasessassrrree s e s s s sassssaeeeaeassasasssnreeeaassasaansnnsneesassssnnenesssssssnns 7

LD CTo IS PR D= = NV =P 7

3 Formatting and Documentationccccimmesimeiimsimmesmmesmmssmnssmsssmsssmmssmnss s e nasssnnsssnnsssnnssnnnsnnns 7
3.1 Write Descriptive CommENtS IN BIOCKScuuuuuiiiiiiiiiiiiiiin i e e e s s s e e e eaaaae e e s e es s e e neanan 8
T 0 o Yol B o 1= g L = 1= 1Y TR 8

Document In More Detail Than You Think YOU NE€d........coiiiiiiirimeiiiniiirierriss s eecenssns s s s s e rssnsns s s s s sennnnns 8
Use An External .doc File If NECESSAIY ...ciiiiiiiiiuiiiii it eeeress s s s rrae e s s e s s e et s e s s e e e eeana e aeeeaaaens 8
3.3 Align Comment BIOCKS VErtICAIlY.......ooeeieiiiii it e nnn e 8
2 1 0o (=T K== o I 1= o L PP 9
Indent the Outer Block Of EaCh FUNCHION.......cooiiiiiiiiiieiiiee e 9
Comments And Variables Should Be At The Same Indent Level As the Code........cuvvrrrrirrirrrrrrrerennrnnnnnnn, 10
Indent Statements Associated With Flow-Control Statementsevveerrervrerrreermmmimrmrr————. 10
3.5 Use Braces When There Are Multiple Lines Under A Flow-Control Statement..........ccccceeeviiiiiivnneicnnneeeennnnnn, 11
Vertically Align MatChing BraCesS.......cccuuuuiiiiiiieiiiiiiis s cerrsse s e s e e s s s e rnn s e s s s e e ranaan e e s e e e e rreeneraa s 11
3.6 Add A Closing Comment At The End Of Heavily Nested Code BIOCKS..........ccererrrrrrrmrrmmmmmmmmmmmmmmmmmnnmnnnmnnnns 11
3.7 Add A Closing Comment At The End Of Each FUNCHON..........cuiiiiiiiii e 12
3.8 Add Identifying Comments At The Beginning and End Of Each Filec..ceuviiiiiiiiiiiiiiiieiiiiiinns 12
3.9 Neat Columns Are Easier TO REA.......cciviiiiiiimiiiiiiiiiiiiiirieereesreeessesresrserrsssrsssrrssrsss s ssssareessenees 13
3.10 Keep Functions and Parameter Lists TOGENEr.........ccvieiiiiiiiiiiiiiiiieeieeereeereeeseesesserssrrssrrssrrrsrrsrrssrrnaeeen 13
3.11 if IS NOt A FUNCHON Call...uuieiiiiiii s s e s s e e e e s e e e s e e e e e e e e e e e e e e n e e e e e s sanas s 13
3.12 When Declaring Pointers, Use * Preceding The Symbol Name.........ccueereerreerrermmmmmmmmmmmmmmmmmmermmnnan.s 14
3.13 Minimize Creating UNNECESSAIY TYPES cuuuieeruuiieerrsierrnsssrrnassesssssrnsssssrsssssssssssserssassermasssenasssnsaesseernnne 14

4 GeNEral ProgramMiNg c.c.e.iicsissssssssssssmmmmssssssssmmmmmmssssssssssmmmmmsssssssssmmmmmnsssssssssmmmtmssssssssssmmiisssssssmannnsss 14
4.1 Avoid Placing Assignment Statements (=) in Conditional EXPreSSiONSeevverrrerrreemmmmmmmmmmmmrmsrinssinsnnnneenes 14
4.2 Put the Shortest Part of @n i f/e15e ON TOP wuvuurrrerrmrrmmmmmmrinnrinnrinnrrnr s 14
4.3 Keep Only Loop Control Items in the for Statement............uueiiiiiiiiiiiii s 15

Avoid Declaring Variables Within Loop Control Statementsceeeeiiiiiiiiirriinie e 15
Declare Variables At the Top Of Their SCOPEcoooviiiiiiiiiiie 16
4.4 Use Debug ASSERT'S LIDEIAIY .vvvuuueeiiiiiiiiiiiie it erriis s rr s s s s s e e nn s s e s s s e e n s e s s e s e eesennnaa s 16
4.5 Check FUNCLION REIUMN COUES ...vvvvrrrrrrrrinriinniinniierrinsssssssss s s s s s s ss s s s e s s e e s s e e s s e e s e e e s s snnnnnnnnnnnn 17

Metagraphics Programming Guidelines i

4.6 Always Have a Default Case With switch and if/else if Statements ..o, 17

E N Lo B 1Y o T o = o 18
4.8 INItIAliZe All POINEEIS ..uutriiiiiiiiiiiitiiriiis s 18
4.9 Enhancing struct COMPAtDIlILY ...uuuerrueruurriiiriiiiiisiieri s 18
Include a structSize Member IN StrUCTUIESuviiviiiiiiiiiiiii 18

Include a structsize Parameter For Functions Returning Structure Data.........ccueevveeveerveeneeennennnnennnnns 19

4.10 AVOId MAGIC NUMDEIS.....ceuiiiiiiiiiiiiiriiiiiiei s s e s e e e e s s e s 20
5 (00T L0 T L a4 T4 1 oo 20
5.1 Count DOWN t0 ZEro iN £01 LOOPS .uuiiiiruiiiiiiiiiieiii st s s s s s s s ens s s e raas s s e ena e s e raa s s eera s s sennessennnssennnnsnns 21
Pre-Increment/Decrement Is Faster Than POSt..........cccvuveeiiniiiinni e 21

T U [o] [T el Moo oL PP PP PPRPPPR 21
5.3 Keep Cache USage IN MGccciiiiiiiiimriiieii i ieiirri e e e s s s e e s s s s s e e e s s s s s ssmsnr e e e e e s s s snnnsnn e e ensnnssnneeas 22
5.4 Data Layout IS IMPOrtantceviiiiiiiuiii i 22
RS T o (0] 1 L= 0 T0 oo [22
Turn Off Incremental LINKINGeeeeeeesmeemenissss s s sssssessssssssssssssssssssssssnnnnnns 22

6 Portability GUIAElINESccceuuiiiiiiineeeiiiiir s s aa s aann e anan 22
6.1 AvOid USING TEMPIALESceeiiieeiieei et e et e e e e e e e e e ee e e eeeeeee s sse s sss s bassbnsssnsbsnsbneeeeeeeeeenenens 22
(oI A 0 To) o I U LY o Vo (/= o o] LSS PPRPPTPPPN 23
6.3 Don't Use Runtime Type INformation (RTTI)..uuuucceiiiiiiiiiiiiiiiiieeiisiiis s s s s ersrass s s s e e eesra s s s s s s e ennnaa s s e s s eennnennes 23
6.4 Don't Use NamesSpace FaClitycoioiermreeieiiii e s e e s s e e s s e nnnnns 23
6.5 Don't Put C++ Comments in C Code and Headers...........couiriiiiiiiiiiiiiiiiiiiiiinneeseeessesssesssesessissssnsnsanes 23
6.6 Make C Header Files Compatible with Cand CH+4cooviiiiiiii e s e r e 24
6.7 Manually Initialize Automatic Array Variablesccooiiiiiiiiiiiii e 24

7 WindOWS ProgramMiNg .cc.cseeessmsssssssmssssmmssssssmmsssssmmmsssssmsssssmmsssssmmssssssmssssssmsssssssmssssssmsssssssssnsssmnsnnes 25
7.1 SOUICESAIE FlES...uuurreeiiiiiiiiiiriiriie s 25
L1 ol Q1 o PP PPTPPPIRY 25

B0l o i @13 T<Tol Q0 [PP PPPPPPPPPP 25

2% A 1= U= IO o o] o 3= PP 25
Compile at Maximum Warning LEVEI 4...........ciiiiiieiiiiiii et ee s e s e s s s e e rnaa s e s s s enrranneen 25

1S o 1CTolt A B = =10 L I] = =TSP TPPPN 26
COMPIIE-TIME MESSAGESuuveeereeariaiaurrrreeeaesassaasnrareesassssaassreresseassasassssseeeasassasasnssnnneeasssssannsnnnsssssnnnnns 26

7.3 WIndows Timers @nd TiMINGcueeeereeireermemieeeeieieereeereeereeeseerseessssssesesesssssssssssssssssssnsssssssnssssssssssneeseeesennn 26
Basic Timers — SetTimer () @Nd KL111TIMET () wirriiiisvrrreerrerrimmmmnnnneiesssnisrirreesss s 26
Multimedia TiIMEr — £ iMEGEETIME () verrrrrrurrenrresnrernsresnsrrnsrenniressrerrrerer . 27

High Performance Timer — QueryPerformanceCoOUNTET () wiiiiiiiiiiriiiiirissssssesssesssesieessessreesreesreereee 27

7.4 Drawing With GDI @nd DiIr€CtX......cuuiieirieireerreeereeeereeereeesserseesssessssssssssssssnsssssssssssssrnsssssssssssssneeseeeerren 27
WRY USE GDI?ueeiiiieiiiiiesinter e e ee e s e s s st s e e e e s s e s s e ssn e e e e e e e s e e aasse e e e e e e e e s s msn e e e e e e e e e s e mnnraeeeesannnnnnenasnasens 28

WHY NOE USE GDI?...cuuiiiiiiniiiiniiinniinss s s s s s e s s e e s e e e s e e n s e e e s e e e e e s e e e s e e e e s snnnnnnnnnnnnnn 28

For Fastest Performance USe DiIr€CtXiceviiiiiiiiiiiiii s 28
Appendix A - Computational Data TYPEScuuuummmmmmmmssiimmmmmanssssssimmmmmnssssssmmmmmmsssssssmmiassssss- 29
Fixed-Point Data Types (defined in Mgtypes.hn) ..o 29
Fixed-Point Macros (defined in MGLyPeSs.n) .uuuee i 31
Appendix B - MRESULT Function Return Codes.....c.iiaimmmmmmmnimmasimmmsimnssimsssmmssssmsssmmsssmssssmssssnssssnssssnnsssnnsnns 32
MRESULT Coding (defined in MEITOr.n)......ccoiiiiiiiiiiiiee e 32
Appendix C - Global Utility Functions and Macrosccoummeesmmmmmsmmmmsssmmmmssssmmmssssmmmsssmnnsss s 33
General Utility Functions (defined in Metincs.h) .ccuuvveiiiiiiciiiicc v e 33

42 (o)1 [=Ta4To! V7 () IR 33
=] (053 8 o) PP 33

_InitStruct() — Zero a structure and set the structSize membercccooiiiiiiiiiiiii 33

COUNEOF() / _AFTAYCOUNL() veeureesreesreesreeseeseeseesseeseesseesseessessseessssenseesseesseessesssesssessnsessesnsesnsensenssens 33

N (g = e T PR 33

01U () PP 33

_ASSERT() / ASSERT() «eeeeeeesaaunrrreerseeessasssnssneesessssasaasssnneesssssssasssssssesssessasssssssneessesssssassnnseesssssmnneeses 33

FAILED() / SUCCEEDED() / WARNINGFREE() ..eeiiiiiiiisurrieiinssiiisisserin s isissssens s ssssssnssssss s s sssssnnns 34

Windows ULility FUNCHONS ...cuvuueiiiiiiciiiiii et st e e na s s s s e e e e s s e e e e ee e e e e raa s 34

ii Metagraphics Programming Guidelines

_MessageBox() — Quick Windows MessageBoX() MACIO ...ccuvuuuieerreeermrruisiessseersnnsessessserssseeesseseesnnnnn 34

_MSG — Windows #pragma mesSage() MACTOuuuurruurruunsnsnnnnssnssssnsssssssssssssssssssssssssssssesssessesssenns 34
_HANDLE_DLGMSG() — Message cracker handler for dialog box Messages..........oovvurrerrrenirinsnsnnnneen. 34

Appendix D - Directory And Filename CONVENtIONS ...iuceuurismssismssssssmmsmsssmmssssismsssssmmssssssmsssssssssnssssnnsnsssnnnnss 35
Valid Folder and File Name Characters........ciiiiiimiiiiii i 35

Avoid Spaces in Folder and File NamMESc.cciiiuiiiiiiiicecriiies et s r e 35

Use Lowercase Folder and File NameSccooiviiiiiiiii ettt 35

Appendix E - C Source File Templateccccciimmmmemmmmmmmmmssmmssssssssss s ssssss s ssssssnes 36
Appendix F - C Header File Template.....ccociccimmmmmmimmeimmmmmmmsmmssmmssmssmssssssmssssmsssnssssssssmssssmnnssnnnns 37
Appendix G - C++ Source File Template.....ccociiiimimmimmimmssssesssssss s nnnns 38
Appendix H - C++ Header File Templatecccoummmvimmmmsimmmmssimmmsssimmmsssinnsssn s ssssssssssssssssssssnssns 39
Appendix I - Writing Code for Language Portability.......ccicicimmmimmimmimmmmsmsmesmmesssmssmmsssnsssnnms 40
Writing for ASCII & Unicode Language POrtabilityeereerrueriuemmiiiiiisssssssssssss s 40

CHAR, WCHAR and TCHAR LYPESuuuereieiiiiiiainrreieiasasssssssssesessssssssssssessssssssssnsssessassssssnsssnessssssanes 41

[T = 1O g = = ot =] PP 41

[T = T T L PSP TPPPP PP PPPPPPIRE 41

Literal ASCIT CHAR SEFNGS cociieeiiiiiiieiiieiiees s s s s a s s s s s s s s e s s s e s s s e s s s s e s s e e s s e e s s e e s s e e s s eesseereeeneeseeeanes 41

Literal Unicode WECHAR SEFNGS. .. uerieiiriiiiiirreieies e s ssssrereees s s s ssnssssee s s s s s ssssnssses s e s s s s s snmnsnnneessssssnnensas 41

Literal Generic TCHAR SEHNGSooiiiiiiies e 41

String Format Conversion FUNCHIONS.........i i e e e s e e e r e s e r e eeen 42

S uglaTo [N] =1 VAN ol U] o ot o] o F= 3P RTTPPPPPPRI 43
MetaWINDOW ASCII/UNICOde FUNCHIONSccvvviiiiiie it e e eeeeee e e e e erae e e e s e e e e e aas e e e s s e e nnnnaaeeeaeeennen 46
TypeServer ASCIL/UNICOAE FUNCHONSuuueumeiiii s s s e 46

aaTo S uglaTe T o AnaTe [y u g o ol USROS PPPPIE 46
APPENAIX J = RS OUICOS i tuuuutnsssnnssrnnssnnsssnssssnsssassssssssnsssnnnss 47
Programming CONVENLIONScoovviiiiiiii 47

500 (S 47

INEEINEL ..ot 47

(0o a [o)1 4174 o] o 47

o 0] 1 1= PR 47

BOOKS 1.ttt 47

=T T 47

LAl (oL oTa = o T 413V P 48

500 (P 48

Metagraphics Programming Guidelines iii

Metagraphics Programming Guidelines

1 Naming Conventions

The proper naming of items is a foundation for building well documented and maintainable code. Thoughtfully
chosen names aid in documenting the code and lessen the need for explicit comments (that’s not to say that good
commenting isn't still very important!).

1.1 Use Common Word Names

For constant and variable identifiers try to use names that are built from common English words, and that clearly
describe the item being defined. Avoid abbreviations where possible, they usually just hurt readability.

Commonly used abbreviations are an exception:

col column index

cur current

i 3§ k generic counters

x y z Cartesian coordinates

min minimum
max maximum
src source

dst destination
num number of
p ptr pointer

s str string

1.2 If You Must Use Hungarian...

While Microsoft seems to be committed in promoting Hungarian notation on the rest of world, there seems very little
real benefit gained from its usage. One of the main negatives with Hungarian notation is that the name mangling
severely hurts readability. For example, something simple like:

char *str;
is declared in Hungarian notation as:

LPCSTR lpszstr;

1pszstr translates to: “long pointer to string terminated by zero called str”. (Is this really easier to understand?)

Even the use of the “p” prefix to designate pointers is usually of marginal benefit, as in the following example:

RECT *pRect = malloc(sizeof (RECT));
pRect->xmin = 0;

In reading the above statements, it's obvious from the usage that prect is a pointer — stating it twice seems
redundant. Keeping things simple is usually best:

RECT *rect = malloc(sizeof (RECT)) ;
rect->xmin = 0;

If you need both an object and a pointer to the object in the same scope, then a “p” pointer prefix might be useful:

char str[256];
char *pstr = str;

In many cases, however, using a different descriptive name can be better:

Metagraphics Programming Guidelines

char str[256];
char *firstNonWhite = str; /* better than “pstr” */

while (

isspace(*firstNonWhite))

firstNonWhite++;

Hungarian Prefixes

Hungarian notation in constant and variable names is not required (nor generally recommended). If however a
project does decide to use Hungarian notation, the following standards should be used for consistency.

Modifiers Basic Types
c char
i int
1 long b BOOL
P pointer £ float
d double s char|[]
u unsigned sz char([] w/NULL
s short h handle
fn function
t structure
Examples
char cMI; /* a single character */
int iPitch; /* a signed integer */
unsigned int uRowBytes; /* an unsigned integer */
double float *pdfDistance; /* pointer to a double */
unsigned char ucCount; /* an unsigned 8-bit counter */
char szInputString([64]; /* a NULL terminated string */
char *pszInputString; /* pointer to NULL terminated string */

1.3 Types & Constants

The names of typedefs and constants are normally all uppercase. Underscores may be used to improve readability.
To reduce potential naming conflicts, a two-character prefix should be used for library types and constants. Here are

some examples:

typedef
typedef
#define
#define

unsigned char UCHAR

int BOOL

MAX BRAINS 100

MWCONFIG BITMAPSUPPORT 8BIT

1.4 Constants & Macros

Constants — Use enum or const Instead of #define

Avoid using #define for symbolic constants. Instead, use either enum or const. Unlike #define symbols, enum
and const follow C scope rules and have types associated with them.

#define cGREEN 1 /* poor */
const int cGreen = 1; /* good */
enum { cGreen =1 }; /* better */
enum Color { red, blue, green }; /* best x/

#define can be especially dangerous if someone redefines the name — the compiler will blindly go off and change
all related references in your program. With enum or const you get an error message. An enum offers several
special advantages:

2

Metagraphics Programming Guidelines

1. With an enumeration identifier (such as “Color”, above), each identifier is treated as a separate type for the
purpose of type checking.

2. An enum, like @a #define, does not allocate any memory and can be placed in a header file. A C const
definition such as “const int num=123;” on the other hand actually allocates space for the int and
initializes it to the specified value. As such, a const definition shouldn’t be used in a header file (unless you
make it a global variable using extern — not recommended!).

3. An enum can be used as the argument of a case statement (a const cannot).

An enum can be used as the array size in an array declaration (a const cannot).

5. Both enum and const allow you to limit identifiers to the scope of a specific function or class (a #define
cannot).

6. enum and const reduce simple mistakes. Here's a classic problem with #define:

>

#define VALUELl 512
#define VALUE2 VALUE1+1024

later in the code
n = 10 * VALUE2;
which is evaluated as:

n = (10 * VALUELl) + 1024; /* OPPS! - this isn’t the answer we expect! */

Adding some parenthesis in the #define will correct this problem, but enum and const eliminate these kind of
mistakes.

Macros — Use inline Instead of #define for Function Macros
Using a #define for a function macro can be dangerous if the parameters are used more than once. For example,
given the following macro definition, the later code statement executes differently than expected:

#define Square (x) ((x)*(x))

later in the code:

z = Square(x++);

In the above example, z is computed properly but x is incremented twice instead of once as would be expected. For
this type of situation an inline function works correctly:

inline long Square(short x)
{ return ((long)x * (long)x); }

#define Constants and Macros

Avoid using #define’s where possible, instead using the preferred enum or const forms for general constants, or
inline for macros functions. When used, #define constants and macros should be in all UPPERCASE. Underbars
"_"may be inserted to separate words for clarity.

#define OUT OF MEMORY 0x0010
#define DEBUGSTRING (s) printf (s)

You need to be careful with #define’ s that are defined as part of a shared library. To avoid conflicts with
application names and other system names, #define’ s used within a library should be prefixed by a two uppercase
character library identifier.

#define MWERROR FILE IO 16 /* Metagraphics MetaWINDOW library */

#define MLERROR INVALID FILE FORMAT 0x0008 /* Metagraphics Media!Lab library */
#define TSERROR INVALID FONT FILE 0x000A /* Metagraphics TypeServer library */

Metagraphics Programming Guidelines 3

1.5 Variables

Except for local loop index variables (such as i, 5, etc.), variable names should be at least three characters long, not
counting any prefixes. Variable names should not contain underscores except where specified in a prefix.

Global Variables
Global variables should begin with the prefix “g_" with the first letter of all words in the variable name capitalized:

int g PixelsWide;
int g PixelsHigh;

In general, global variables should be avoided whenever possible. Global variables impact the global name space
and can create coupling relationships and nasty maintenance problems. When used, global variables should be
initialized with their declaration, or be self-initializing as part of an associated internal function structure.

Member Variables

Member variables of a C++ class should begin with the prefix “m_" with the first letter of all words in the variable
name capitalized:

int m PixelsWide;
int m PixelsHigh;

Static Variables

For static variables global to a single source file (not static local variables, see below),should begin with the prefix
“s_" with the first letter of all words in the variable hame capitalized:

static int s PixelsWide;
static int s _PixelsHigh;

In a C and C++ source file, static variables should be defined at the beginning of the source file after the header file
#include’ s and before the static function prototypes.

Local Variables

For local variables (including static local variables), the first word should be all lowercase and subsequent words
should capitalize the first letter:

int pixelsWide;
int pixelsHigh;
static int rowBytes;

Function Arguments
Similar to local variables, local function arguments should begin with the first word entirely lowercase and
subsequent words with the first letter capitalized:

BOOL ReadAudioHeader (UINT headerSize);
LONG ReadAudio(void *buffer, LONG bufferSize);
LONG ReadFrame (int dstX, int dstY, const RECT *dstRect);

1.6 Function and Class Names

Function names should be mixed case with first letter of each word of the name capitalized. Function names should
not contain underscores.

4 Metagraphics Programming Guidelines

Avoid Microsoft and ANSI C Names

Microsoft Windows currently defines some 1300+ functions, over 80 classes and an immense number of
#define’s. ANSI C also reserves symbols starting with an underscore * ” and type names ending with _t. These
name spaces can also be expected change and grow. If you pick a name that ANSI C or Microsoft uses, or chooses
to use later, somebody is going to have to change their code (and it’s likely not Microsoft).

Avoiding ANSI names is simple, other than the variable-name prefixes g (global), s (static) and m_ (member)
outlined earlier, don't use underbars in any functions or class names. You need to be more careful to avoid Microsoft
name conflicts. To be safe a project may optionally choose a two-character uppercase identifier to prefix its function
and class names. Names in shared C function libraries and shared C++ class libraries should use a two-character
lowercase prefix to avoid conflicts with application and system names (see below).

C Application Functions

Function names for C application and system functions should be one or more words with first letter of each word
capitalized. Function names should not have underscores.

void PaintWindow () ;

void ViewProperties(HWND hWnd);

void SetDialogPageItems(HWND hDlg, int dlgPage);
void ErrorMessage (HWND hWnd, char *messageString);

C Library Functions

To avoid system or application conflicts, names used for functions in a shared C library should begin with a two
lowercase character library identifier followed by a mixed case name with the first letter of each word in the name
capitalized. Library function names should not contain underscores.

For example, Metagraphics C library functions use the following prefixes:
mg Metagraphics (generic)

mw MetaWINDOW
ml MedialLab

mx Media!FX
mk Media!Key
ts TypeServer

Sample Metagraphics library functions:

void mwMoveTo (int x, int y);
MRESULT mkValidateName (char *firstName, char *lastName);
void tsGetMetrics (TSMETRICS *metrics);

C++ Application Classes

All application and system classes should begin with the prefix “C”, followed by one or more words with the first
letter of each word capitalized. Class names should not contain underscores.

Sample application and system class names:

class CMfcPlayApp
class CString
class CListNode
class CLinkedList

C++ Library Classes

To avoid system and application class name conflicts, names for classes in a shared C++ class library should begin
with a three-character prefix. The class library prefix should begin with a lowercase two-character library identifier

Metagraphics Programming Guidelines 5

followed by a capital letter "C”". For example, Metagraphics C++ library classes use a prefix of *mgC"”. (Fewer
prefixes are needed for C++ since a small group of classes usually encapsulate a larger list of functions.) Library
class names should not contain underscores.

Sample Metagraphics C++ class names:

class mgCAudioWAV : virtual public mgCFile, virtual public mgCAudio
class mgCBitmap : virtual public mgCObject
class mgCImageAVI : public mgCAudioWAV, public mgCImage

C++ Class Methods

Since C++ class methods are qualified within the scope of a specific class, C++ class methods do not need any
special prefixes even when part of a shared class library (for class libraries, the class name itself should include a
library prefix, as noted above). All C++ class methods should be mixed case with first letter of each word in the
name capitalized. Class method names should not contain underscores.

BOOL ReadAudioHeader (UINT headerSize);
LONG ReadAudio(void *buffer, LONG length);
LONG ReadFrame (int dstX, int dstY, const RECT *dstRect);

1.7 Summary

The naming conventions outlined above allow someone reading the code to quickly discern where the definition of an
object is located. Using these conventions simplifies identifying the object type and the location where it's defined.

g _PixelsWide a global variable, global across multiple source files.
m_AudoInfo a member variable within a class.
s_PixelsHigh a static variable, global to this source file only.
rowBytes a local variable or local function argument.
GREEN an application #define constant or macro.
MWERR CODE a shared library #define constant or macro.
PaintWindow () an application C function.

mwMoveTo () a shared C library function

CString an application or system class

mgCBitmap a shared C++ library class

.ReadFrame () a C++ class method.

2 Basic Data Types
ANSI C notes that the size of standard types such as int, short, long, float, double, etc. are machine
and/or compiler dependent. One of the only general guaranteed relationship is that:

sizeof (short) <= sizeof (int) <= sizeof (long)

For our purposes, we can assume an int or a short is @ minimum of 16-bits, and a 1ong is @ minimum of 32-bits.
Any of these may be larger, however, depending on the target platform and compiler. For consistency and
portability, you should use the definable data types noted below:

Data Type Win32 Data Type ‘ Description
BYTE unsigned char 8-bit unsigned integer (0 to +255)
CHAR signed char 8-bit signed integer (-128 to +127), or ANSI character
& INT int 16- or 32-bit (or future 64-bit) native signed integer
INTS8 signed char 8-bit signed integer (-128 to +127)

6 Metagraphics Programming Guidelines

INT16 short 16-bit signed integer (-32768 to +32767)
INT32 long 32-bit signed integer (-2,147,483,648 to +2,147,483,647)
INT64 (future) 64-bit signed integer (a very big signed number)
& LONG long 32-bit (or future 64-bit) long integer
SHORT short 16-bit signed short integer (-32768 to +32767)
TCHAR char or INT16 8-bit or 16-bit character, dependent if *_UNICODE" is defined
< UINT unsigned int 16- or 32-bit (or future 64-bit) native unsigned integer
UINT8 unsigned char 8-bit unsigned integer (0 to +255)
UINT16 unsigned short 16-bit unsigned integer (0 to +65535)
UINT32 unsigned long 32-bit unsigned integer (0 to +4,294,967,295)
UINT64 (future) 64-bit unsigned integer (a very big unsigned number)
<& ULONG unsigned long 32-bit (or future 64-bit) unsigned long integer
USHORT unsigned short 16-bit unsigned integer (0 to +65535)

Preferred types indicated in BOLD.
<& Indicates machine-dependent variable size data types.

Variable Size Data Types

An 1NT will typically be a native size for the target machine, and is usually the optimum size for fastest integer
operations (INT’s are 64-bits on the new 64-bit processors!). Other sizes, either large or smaller, may incur a
performance penalty (a short on a 32-bit Pentium processor, for example, requires an instruction prefix byte which
slows execution).

It's best to use INT or UINT for local variables that can be contained within @ minimum 16-bit value. For local
integer variables that require more than 16-bits, use LONG or ULONG. LONG and ULONG variables will be a minimum
of 32-bits, but similarly may increase in size, again dependent on the target platform (for 64-bit processors 1.ONG and
ULONG may either be 32- or 64-bits).

INT, UINT, LONG and ULONG are best used for local run-time variables for optimal performance. Since these types
may change in size dependent on the target machine, they should not be used in any data structure or data type
that is written to a file or communicated to another machine!

Fixed Size Data Types

For data structures and objects that are to be written or communicated externally, you should use the fixed size data
types: CHAR, BYTE, INT16, UINT16, INT32 or UINT32. These types are guaranteed to be their specified size.

3 Formatting and Documentation

Code without clear comments and through documentation is next to worthless (or in many cases, less than
worthless). Thorough documentation saves substantially in not only in later maintenance and support, but also in up
front development. By putting into words what the code logic is doing, you perform a double check on the logic in
your design.

Metagraphics Programming Guidelines 7

3.1 Write Descriptive Comments In Blocks

Comments are generally best if placed in multiline blocks alternating with blocks of code. This describes at a high
level what the next section of code is doing. If the code section is complex, you can use a form of footnote
comments to identify specific code areas:

/* Here is a block comment describing the block of code that follows.

* After a general summary, we describe the specifics:
*

* 1. This comment describes what’s happening at the line labeled <I1>.
*

* 2. This comment describes what’s happening at the line labeled <2>.
*/

here is the code();
while (some condition)
{
this code is rather obscure(); /* <1> %/
}
more stuff here();
while (some condition)
{
this code is also obscure(); /x<2> r/

}

3.2 Document Defensively

Document In More Detail Than You Think You Need

When you're in the middle of coding a particular function or algorithm, you usually have a good understanding of its
design and it's clear (to you) how it works. Looking at the same code six months or a year later, the design and
operation will not be as obvious. Document in more detail than you think you need. Thoroughly describe the overall
design and operation of your code. Documenting even the simpler (at the time) details will help you or someone else
later to get back up to speed faster if you need to review or make changes to the code.

The level of detail to which to document is, of course, somewhat subjective — use your best judgment. On the other
extreme, you needn’t go overboard in documenting the obvious (such as “x++; /* increment x */"—
comments like this just add clutter to the code). Be defensive though — if there’s a doubt, write it out!

Use An External .doc File If Necessary

For documentation describing the development of algorithms, especially if more complex algebraic expressions or
notations are involved, use a separate Word .doc file. Word files provide enhanced features such as the MS Equation
Editor to help you more clearly write your documentation. Word files also allow you to imbed graphics and
illustrations to make things even clearer (remember “one picture is worth a thousand ...").

If you use an external .doc file, try to use the same main filename as the related .c or .cpp source code file. Also
insert a comment in the source code file referencing the external documentation file. Typically .doc files are kept
together in a separate \doc directory adjacent to the \src source code directory for the project. Make sure that all
external documentation files are also checked into source control.

3.3 Align Comment Blocks Vertically

When writing C style comment blocks, align the /* and */ vertically in multiline comments:
/* First line,
* second line,
* third line,

*/

8 Metagraphics Programming Guidelines

Here's an example of a comment block that can be improved:

/)(‘*)(‘*)(‘*)(‘*)(‘*)(‘***

void a function(void)

Here is a multiline comment, doing all the great
things a multiline comment should do.

Unfortunately the lack of a vertical line of stars to the left
makes it difficult to visually separate the comment from the code

k& ok ko ok k& ok o ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok b ok ok ok ok ok ok ok b ok ok o ok ok

void a function(void)
{

/* here 1is the actual function */

code goes here();

}

/**/

In addition to making it visually difficult to see what is the comment and what is the code, it's easy to lose and hard
to spot a missing closing * /. Here's the preferred format:

/**
*

void a function(void)

Here is a multiline comment, doing all the great
things a multiline comment should do.

Here the vertical line of stars to the left makes it

*
*
*
*
*
*
* easy to visually separate the comment from the code.
*

*

Sk ok ko ok ke ok ke ke ke ok sk ok ok ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

*/

void a function(void)
{

/* here 1is the actual function */

code goes here();

For C++ simply use // to begin each line within a vertically aligned comment block.

3.4 Indents and Tabs

Consistent indenting is part of making your code readable. Four (4) space indents seem to be best (this is also the
Microsoft Visual C++ standard). “Soft tabs” (where spaces are used instead of hard tab characters) are
recommended to allow the code to be viewed in any editor, and also make it simple to cut and paste code samples
into Word, HTML, Help or other files.

Indent the Outer Block Of Each Function

Indent starting at the outer block of each function:
void foo(wvoid)

{
int x; /* GOOD */

Metagraphics Programming Guidelines

if (x)
yyy ()
more code () ;
even more code();

}
Not indenting at the outer block makes it more difficult to locate the top of the function:

void foo(wvoid)

{

int x; /* POOR */
if (x)
yyy ()

more code () ;
even more code();

}

Comments And Variables Should Be At The Same Indent Level As the Code

Comments and variable declarations should be indented at the same level as the code:

foo ()
{
/* Here we have some comments and
* declare some local variables.
*/
int i;
/* Here we describe what
* the code does.
*/
i = code():
if (1)

{
/* Here are some comments
* describing what this code does.
*/

int j;
j = more code();

}
b /* foo() */

Indent Statements Associated With Flow-Control Statements
Indent statements associated with flow-control statements if, else, for, while or do.
if (byLand)
ShowOne () ; /* GOOD */

else /* bySea */
ShowTwo () ;

Conditional sections of flow control should be broken into multiple lines, as illustrated above. Avoid using single line
flow control statements. These are not only harder to read, but are difficult debug and breakpoint:

if (byLand) ShowOne () else ShowTwo () ; /* POOR */
An exception to this might be if the code can be formatted into neat columns:

if (byLand) ShowOne();
else if (bySea) ShowTwo(); /* OK */

10 Metagraphics Programming Guidelines

else /* byAir */ ShowThree () ;

3.5 Use Braces When There Are Multiple Lines Under A Flow-Control
Statement

if (byLand)
{ /* GOOD */
/* This is a good rule even when the
* additional lines are only comments.
*/
ShowOne () ;
}

Without braces it's easy to insert an additional statement that breaks the code:

if (byLand)
/* Here the code breaks when we just insert the
* LightLamp () statement and miss the proper bracing.
*/
LightLamp () ;
ShowOne () ; /* OUCH! */

Vertically Align Matching Braces

Finding a missing brace can be a problem when code blocks become especially long. Vertically aligning braces at the
outer level makes it much easier to see how they’re matched:

if (some condition)
{

/* inner block */

}

K&R style bracing makes it much more difficult to match up brace pairs:

if (some condition) { /* not recommended */
code () ;

}

else {

more code () ;

}

Again, vertically aligning brace pairs makes it easier to spot missing braces, and visually easier to locate the inner
code blocks:

if (some condition)

{ /* preferred */
code () ;

}

else

{

more code () ;

}

3.6 Add A Closing Comment At The End Of Heavily Nested Code Blocks

Use a closing comment to mark the ending scope for long or heavily nested compound statements:

Metagraphics Programming Guidelines 11

while (a < b)
{ while (something else())
{ for (1=10; --i>0;)
{ for (j=10; --3>0;)
{ // many lines of code here
Down later:

} /* for (j=10; --3>0;) */

// some more lines of code
} /* for (i=10; --1>0;) */

// maybe some more lines of code
} /* while (something else()) */

// maybe some more lines of code
} /* while (a < b) */

Make sure the comment clarifies the close of the associated statement. The following closing comments are too
terse to be useful:

} /* for */

// maybe some more lines of code
} /* for */

// maybe some more lines of code
} /* while */

// maybe some more lines of code
} /* while */

You can skip the closing comment when the statements are short and the nesting is clear:

while (a < b)
{
for (i=10; --i>0;)

3.7 Add A Closing Comment At The End Of Each Function

A closing comment on the closing brace of a long function makes it easier to locate the function when scanning
backwards through the file.

void foo(void)
{
lots of code();

} /* foo() */

3.8 Add Identifying Comments At The Beginning and End Of Each File

When you have multiple files open for editing, including an identifying comment at the beginning and end of each file
helps confirm which file you're working on. A closing comment at the end of a file is especially helpful in verifying
that the file is intact and has not been inadvertently truncated at some point.

12 Metagraphics Programming Guidelines

/* foo.c — Copyright (c) 1999 Nobody better use the function name foo again */

void foo(void)

{
lots of code();

} /* foo() */
/* End of File - foo.c */

Additional C and C++ code templates are illustrated in Appendix D-G.

3.9 Neat Columns Are Easier To Read

Formatting and making your code easy to read is part of good documentation. Organizing your code into a “tabular”
format can help in this regard. Variable declarations, for example, can be formatted into “type”, “name” and
“description” columns. Notice that while the following two code blocks are the functionally the same, the second one
is visually much easier to read.

/* Tightly grouped, non-columnized code is hard to read. */

int x; /* description of what X is */

ULONG (*foo) (); /* description of what foo does */
int *iPtr; /* description of what iPtr is */

int z; /* description of what z is */

x=10; /* related comment */

iPtr = &x; /* another comment */
z = *iPtr + 250; /* and another */

compared to:

/* With some added white space and columns
* the code is visually much easier to read.

*/
int X; /* description of what X is */
ULONG (*foo) () ; /* description of what foo does */
int *i1Ptr; /* description of what iPtr is */
int z; /* description of what z is */
X = 10; /* related comment */
iPtr = &x; /* another comment */
z = *iPtr + 250; /* and another */

3.10 Keep Functions and Parameter Lists Together

An argument list is an integral part of a function call and should not be separated from the function name. The left
parenthesis should start immediately following the function name (no space), followed by the list of arguments (each
preceded by a space), and then the closing right parenthesis (preceded by a space).

foo(argl, arg2, arg3); /* good */

foo (argl,arg2,arg?); /* poor */

3.11 if Is Not A Function Call

An if statement should be written to read as a simple sentence. To make it easier to read leave a space after if,
else if or else and the associated conditional expression. Also leave some white space after the opening left
parenthesis, and before the closing right.

Metagraphics Programming Guidelines 13

if (todayIsThursday || todayIsFriday)
{
MakeWeekendPlans () ;

}

3.12 When Declaring Pointers, Use * Preceding The Symbol Name
When declaring pointers, place the * immediately prefixing the symbol name - not as a suffix to the type.

int* x,y; /* poor — both x & y appear to be pointers - but y isn’t! */
int *x,y; /* good - here it’s clearer that x is a pointer and y isn’t */

3.13 Minimize Creating Unnecessary Types

For virtually all basic types, Microsoft also defines associated pointer types such as INT_PTR, LONG_PTR,
ULONG_PTR, etc. Not only does this clutter the name space, but anytime someone reading the code sees one of
these types they have to ask themselves “how is this type defined and why is it so special?”.

INT, LONG and ULONG are defined to facilitate changes for machine dependency. INT_PTR, LONG_PTR and
ULONG_PTR simply add more details to track. One detail by itself is not a problem, but take on an application with
hundreds of minor details and you just add to your support overhead. Keep things simple, using INT *, LONG *
and ULONG * makes things explicitly clear to even a work study support programmer reading your code.

4 General Programming

4.1 Avoid Placing Assignment Statements (=) in Conditional Expressions
While close to the heart of many programmers (yes, I admit it), avoid placing an assignment within a conditional
expression.

if | (c=getchar()) != EOF) /* poor x/

c = getchar();
if (¢ != EOF) /* preferred */

If you place an assignment within any conditional, then you must turn off the compiler error detection for
“assignment in conditional expression” warnings. This prevents you from detecting common mistypes such as

if (x =2) whereyoumeanttosay if (x == 2).

4.2 Put the Shortest Part of an if/else On Top

Frequently an i f/e1se will have one short error handling section, and one long code block that does most of the
actual work. Your code will be more readable if you start with the shortest clause near the top.

if (errorCondition)
HandleError () ;

else

{
/* many lines of code here */

}

14 Metagraphics Programming Guidelines

4.3 Keep Only Loop Control Items in the for Statement

The purpose of a for statement is to organize the initialization, test and increment part of the loop control into one
place. Don't clutter it up with things that have nothing to do with the loop control. Try to avoid shortcuts such as
the following:

void foo ()

{
enum { arraySize=50 };
int arraylarraySize];
int 1i;
int *ptr;

for (ptr = array, i = ARRAY SIZE; --i >= 0; f(ptr++))

}
Keep only the loop control variables in the for statement to keep things clear:

void foo ()

{
enum { arraySize=50 };
int arraylarraySize];
int 1i;
int *ptr;

ptr
for

= array;
(i = arraySize; --1i >= 0;)
f(ptr++);

Avoid Declaring Variables Within Loop Control Statements

void foo ()

{
enum { arraySize=50 };
int arraylarraySize];
int *ptr;

lots of code here()

ptr = array;

for (int i = arraySize; --1i >= 0;)
{

lots of more code here()
}
1

In the sample above, it appears that i is only in scope within the for loop. In fact, the scope of i is at the next

outer level. If we wish to add another for loop with i as a loop counter later, you'll get a compiler error if you
incorrectly redeclare i:

Metagraphics Programming Guidelines 15

void foo ()

{
enum { arraySize=50 };
int arraylarraySize];
int *ptr;

lots of code here();
ptr = array;
for (int i = arraySize; --1 >= 0;)
{
lots more code here();

}

bunches of more code here();

for (int i = 10; --1 >= 0;) /* error - the previous ‘for’ has already
{ * declared 1 in the outer scope.
again more code (); */

}
}

If there's a lot of code, finding where 1 is declared and seeing it's scope is difficult when if it's imbedded within a
control statement.

Declare Variables At the Top Of Their Scope

As illustrated in the above code sample, trying to locate variable declarations can become difficult if they're inserted
randomly within large sections of code. Defining variables at the top of their scope makes it easier to locate their
declarations:

void foo ()

{
enum { arraySize=50 };
int arraylarraySize];

int 1i; /* here it’s easy to locate the declaration for i */
int *ptr;

lots of code here();

ptr = array;

for (i = arraySize; --1i >= 0;)

{
int §j = 1i; /* If we need, we can declare variables
int k = 0; * within the scope of the for loop here.

*/

lots more code();

4.4 Use Debug ASSERT’s Liberally

_ASSERT () (standard C) and ASSERT () (C++) macros provide a simple mechanism for checking assumptions
during debugging — use them liberally! Debug ASSERT () and ASSERT () statements are only compiled when the
_ DEBUG identifier is defined. When DEBUG is not defined, ASSERT () and ASSERT () statements are removed by
the precompiler and perform no operation.

Assert statements perform a test for a specified condition, and if the test condition is not met cause a debug
breakpoint to occur. When used with MRESULT function return codes (below), assert statements can also be used to
distinguish between “normal completion” and “non-fatal/warning completion” cases during debug:

Assert debug breakpoint for either “fatal error” or “non-fatal/warning” return conditions (no breakpoint on “normal
completion”):

MRESULT result;

16 Metagraphics Programming Guidelines

result = mgReadHeader () ;

_ASSERT (WARNINGFREE (result)); /* debug breakpoint if result!=0 */
if (FAILED (result)) /* check for result<(0 fatal error case */
{

/* handle fatal error case */

}

Assert debug breakpoint for “fatal error” return conditions only:
MRESULT result;

result = mgReadHeader () ;
ASSERT (SUCCEEDED (result)); /* debug breakpoint if result<O */

if (FAILED (result)) /* check for result<(0 fatal error case */
{

/* handle fatal error case */

}

_ASSERT (), SUCCEEDED (), FAILED () and WARNINGFREE () are macros defined in the Metagraphics METINCS . H
header file (see Appendix B):

4.5 Check Function Return Codes

Functions and methods should be written to return a failure, success or warning return code (this also helps structure
your code for use with COM, if desired later). Where possible, return an MRESULT code. MRESULT is a sighed long
integer value whose return code indicates the following basic conditions:

<0 Failure Negative value contains an fatal error return code along with a library and function ID.
=0 Success Normal completion
>0 Success Positive value contains a special non-fatal/warning completion code along with

a library and function ID.

MRESULT' s along with the _ASSERT (), ASSERT (), SUCCEEDED (), FAILED () and WARNINGFREE () macros can
greatly aid in both documenting and debugging your code:

MRESULT result;

result = mgReadHeader () ;
ASSERT (WARNINGFREE (result)); /* debug breakpoint if result!=0 */

if (FAILED(result)) /* check for result<0 fatal error case */
{

/* handle failure situation */

}

4.6 Always Have a Default Case With switch and if/else if Statements

A switch statement should always have a default: case, especially if the default shouldnt happen. If the default
case is illegal, log it, return an error code or do something graceful.

switch (i)

{

case 1: DoSomething(); break;
case 2: DoOtherthing(); break;
default:

{
_ASSERT (FALSE); /* debug trap */
ErrorMessage("illegal value for i");

Metagraphics Programming Guidelines 17

The same guideline applies when using if with else if statements. Always include a default e1se statement at
the end to trap unexpected conditions.

if (1 == 1)
DoSomething () ;
else if (i==2)
DoOtherthing ()
else /* handle unexpected condition */
{
_ASSERT(FALSE); /* debug trap */
ErrorMessage("illegal value for i");

4.7 Don't Divide By Zero

Precede all division statements for an explicit check for divide by zero. If the dividend is zero, log it, return an error
code or do something graceful (don't throw a “divide by zero” exception).

4.8 Initialize All Pointers

Initialize all pointers when they are declared with some valid value. If no value is available when declared, initialize
the pointer to NULL.

4.9 Enhancing struct Compatibility

Even with the best design planning, it's often necessary to add new variables to existing data structures to support
new features or capabilities in your program. Data structure extensibility becomes an issue, however, unless all the
components for creating and accessing the data are kept exactly in sync. Struct “versioning” problems may occur in
many common situations:

1. The data structure is written as part of a file that is stored on disk and read back later for processing
(potentially by a new version of the program).

2. The structure is used as part of a data transfer for information electronically to another machine (potentially
by a different version of the program).

3. Portions of the application are compiled and linked at different times (such as DLL's and COM modules).

Whenever components of an application, utility or shared library are built as separate elements, the risk for data
structure version incompatibility arises. The following guidelines are designed to enhance structures for extensibility
and upward compatibility.

Include a structsize Member In Structures

Often with functions that are built into dynamically linked libraries (DLL's) it may be necessary later to update a
function which, in turn, may require adding additional items to a structure that is passed by pointer reference.
Version problems will occur if an existing application passes a pointer of an old structure type to a function in a new
DLL with an updated structure type.

To simplify updates and to facilitate DLL compatibility between versions, unless you are absolutely certain that a
structure will never change, include an INT32 structSize variable as the first data member of all structures. By
examining the structsize variable, updated functions can determine specifically which version of a structure is
being passed, and then act accordingly in a compatible manner. The InitStruct () macro is a convenient
method to initialize a structure to zero and then automatically set the structsize member.

The application code would be something like this:
typedef struct fooStruct
{

INT32 structSize; /* size of this structure */

18 Metagraphics Programming Guidelines

/* other structure members defined here */
} fooStruct;

_InitStruct(&myStruct); /* zero the structure and set structSize */
/* set other structure members */

foo(&myStruct); /* call a function passing a pointer to the struct */

The called function code can now distinguish between different structure versions:

typedef struct FOOSTRUCT REV1 /* old version of FOOSTRUCT */
{

INT32 structSize; /* size of this structure */

/* other structure members defined here */
} FOOSTRUCT REV1I;

typedef struct FOOSTRUCT /* current version of FOOSTRUCT */

{
INT32 structSize; /* size of this structure */

/* original structure members defined here */
/* new structure members defined here */
} FOOSTRUCT;

void foo(FOOSTRUCT *fooStruct)

{
if (fooStruct->structSize == sizeof (FOOSTRUCT REV1))

{
/* cast fooStruct to FOOSTRUCT REV1 and process accordingly */

}
else if (fooStruct->structSize == sizeof (FOOSTRUCT))

{
/* process fooStruct with current FOOSTRUCT definition */

}

else

{ /* We can also double check we are getting passed a valid parameter. */
/* Something is bad if FOOSTRUCT doesn’t match any size we expect! */
_ASSERT(FALSE); /* debug trap */

}
} /% foo() */

A structSize variable automates the older technique of having a manually updated version number at the
beginning of a data structure.

Include a structSize Parameter For Functions Returning Structure Data

With a structSize variable as the first element in a structure, when a function is called passing the structure as
input the function can now easily identify a specific structure version (see above). Returning data in a structure
passed by pointer reference also creates potential versioning problems. If only a pointer to an empty structure is
passed, the called function can only assume its size and version. If the caller’s structure version is out of date and
too small, data overwrite errors can easily occur.

To enhance compatibility for structures passed by pointer for returning data, include a structsize parameter along
with the structure pointer parameter passed to the function. The structsize parameter allows the called function
to identify specifically which version of a structure is being passed, and then act accordingly in a compatible manner.

FOO myFoo; /* FOO object instance handle */
FOOINFO myFooInfo; /* FOOINFO data structure */
MRESULT result; /* function return code */

/* create a FOO instance (foo instance handle is returned) */
result = Foo Create(&myFoo);
_ASSERT (SUCCEEDED (result));

Metagraphics Programming Guidelines 19

/* get FOOINFO struct data */
result = Foo GetFooInfo(myFoo, sizeof (FOOINFO), &myFooInfo);
_ASSERT (SUCCEEDED (result));

By explicitly passing the size of the structure, the called function can now distinguish between different structure
versions:

/* Return FOOINFO structure data */
MRESULT Foo GetFooInfo (

FOO foo, /* input, foo handle x/

int fooInfoSize, /* input, fooInfo struct size */

FOOINFO *fooInfo); /* output, fooInfo information */
{

if (fooInfoSize == sizeof (FOOINFO REV1))

{
/* cast fooInfo to old FOOINFO REV1 and process accordingly */
}
else if (fooInfoSize == sizeof (FOOINFO))
{
/* process fooInfo with current FOOINFO definition */
}

else

{ /* We can also double check we are getting passed a valid parameter. */
/* Something is bad if fooInfoSize doesn’t match any size we expect! */
_ASSERT(FALSE); /* debug trap */
}
} /* Foo GetFooInfo() */

4.10 Avoid Magic Numbers
Except for possibly 0 or 1, the main body of your code should avoid using explicit numbers. Use enum or const to
give a number a symbolic name. This provides two advantages:

e The symbolic name helps document what the value is and what it's used for.

e If the number is used in more than one place, there’s only one spot to change.

Locally used variables can be an exception to this:

foo(TCHAR *fullname)
{
TCHAR firstname[256], lastname([256]; /* this is ok */

/* get the individual firstname and lastname strings */
GetNames (fullname,

firstname, ArrayCount (firstname),

lastname, ArrayCount(lastname));

Because the ArrayCount () macro is used, the number of elements in each array is automatically supplied (and
works both for ASCII or Unicode!).
C and C++ Portability Rules

5 Code Optimization

The following items relate to general techniques for code optimization. While some of these optimizations are
specific to Intel processors, even these are good points to check when working on other machines.

20 Metagraphics Programming Guidelines

5.1 Count Down to Zero in for Loops

Testing against zero is usually much more efficient than repeatedly testing for an explicit value. With a good
compiler, a pre-decrement will also set the condition code so that a separate test for zero is not even necessary.
Instead of:

for (1=0; 1 < max; 1i++)
{

/* loop code here */
}

use:

for (i=max-1; --i >= 0;) /* faster */
{

/* loop code here */
}

While it's generally preferable to keep the loop control variables together at the beginning at the loop, for extremely
time-critical loops replace the above for loop with a do/while loop to streamline the assembly language code for
faster execution:

i = max - 1;
do /* fastest */

{
/* loop code here */
} while (--1 >= 0);

Pre-Increment/Decrement Is Faster Than Post

For Intel processors, using predecrement or preincrement operators (e.g. —--i or ++i) can save a memory reference
and are generally faster than using post-decrement/post-increment operators (e.g. i-- or i++).

5.2 Unrolling Loops

Unrolling loops is a simple way to speed performance. This works best if you can keep the list of loop instructions
small enough to still fit within the processor instruction cache. For Pentium processors, L1 cache is 128 bytes.
Typical Loop:

checksum = 0;
for (n=0; n<32768; ++n)
checksum += arrayl[n];

Unrolling the loop improves the speed 50% or more:

checksum = 0;
for (n=0; n<32768; n+=8)
{

checksum += array[n+0];
checksum += array[n+l];
checksum += array[n+2];
checksum += array[n+3];
checksum += array[n+4];
checksum += array[n+5];
checksum += array[n+6];
checksum += array[n+7];

}

Also for Intel processors, accessing arrays using indexes can be more than two times faster than using incremented
pointers (the compiler uses the new * [ptr+const] instruction address mode).

Metagraphics Programming Guidelines 21

5.3 Keep Cache Usage In Mind

Keep usage of the processor cache in mind — this can significantly speed up your code! L1 is the primary on-chip
cache, and is either 8Kb or 16Kb in size. Access is organized in 32-byte groups. For fastest speed, process blocks of
data in 16Kb (or less) groups, and try to align important addresses on 16 byte boundaries.

5.4 Data Layout Is Important
Improper data structure layout can have a detrimental effect on program speed. Keep in mind the following
guidelines:

e Don't pack data structures. This can cause data to be unevenly aligned and cause memory access to be
slower. Misalignment of data is expensive — it can cost up to 12 clocks per access!

e Pay careful attention to the size and alignment of structures and arrays. Keep the cache in mind when
creating structures.

e Try to put frequently accessed data next to each other to keep it in the cache.
e Align 16-bit values on 2 byte boundaries.
e Align 32-bit values on 4 byte boundaries.
e Align 64-bit values on 8 byte boundaries.

e Align data structures and arrays greater than 32 bytes on 32 byte boundaries. If you have a large structure,
make sure that it gets allocated on a 32-byte boundary (this may mean writing your own memory allocator).

e Most compilers will do the right thing for all data types except char.

e Put data members in a struct in size order, largest first.

5.5 Profile Your Code

Use a profiler to identify the hot spots in your code (chances are they're not where you think). The Microsoft Visual
C++ Profileris ok; Intel VTune or NuMega TrueTime are better. Once you identify a hot spot, before tweaking the
code, think through if there might be a faster or better way to perform the same operation.

Turn Off Incremental Linking
Incremental linking bloats the code size, and also skews profiling and performance results.

6 Portability Guidelines

The following set of guidelines are useful insuring that your code is portable to a broad range of C/C++ compilers
and OS platforms. Most of these are related to relatively new C/C++ language features that are not yet fully or
consistently implemented across various compilers. For all of these situations there are usually simple workarounds
that operate more reliably and that are supported by all compilers.

6.1 Avoid Using Templates

Don't use the C++ template feature. This feature is still not implemented by all compilers, and even when it is
implemented, there is great variation. Most of the interesting things that you would want to do with templates (type
safe container classes, etc.) can be implemented with macros and casting, even though you do lose the type safety
(pity). Often times subclassing can easily achieve the same result. Templates also slow compilation, 200%-300% is
not uncommon, and their support in many compilers that offer it is still subject to errors (gcc is such an example).

Workaround: The things you would like to use templates for are, most commonly, polymorphic containers (in the

sense that they can contain objects of any type without compromising C++ type system, i.e. using void * is out of
question). Lack of templates is not a reason to use static arrays or typeless (passing by void *) containers.

22 Metagraphics Programming Guidelines

6.2 Don't Using Exceptions

C++ exceptions are another feature that are not widely implemented, and as such, their use makes your code
compiler and platform specific.

Workaround: There is no real workaround, of course, or the exceptions wouldn't have been added to the language.
However, here are a few suggestions that might help:

e Every function should returns an integer (or at least boolean) error code.
There is no such thing as a function that never fails - even if it can't fail now, it will likely later, when
modified to be more powerful or general. Put an integer return type from the very beginning (see Appendix
B, MRESULT)!

e Every function you call may fail - check the return code!
Never rely assuming a function's success, always test for a possible error.

e Tell the user about the error, don't silently ignore them.
Exceptions are always caught and, normally, processed when they're caught. In the same manner, the
error return code must always be processed somehow. You may choose to ignore it, but at least log the
error and tell the user that something wrong happened.

One exception to this rule (don't say it) is that it's probably ok, and may be necessary to use exceptions in some
machine specific code. If you do use exceptions in machine specific code you must catch all exceptions there
because you can't throw the exception across cross platform code.

6.3 Don’t Use Runtime Type Information (RTTI)

Run-time type information (RTTI) is a relatively new C++ feature, and not supported in many compilers.

Workaround: If you need runtime typing, you can achieve a similar result by adding a c1assof () virtual member
function to the base class of your hierarchy and overriding that member function in each subclass. If classOf ()
returns a unique value for each class in the hierarchy, you'll be able to do type comparisons at runtime.

6.4 Don't Use Namespace Facility

Support of namespaces (through the namespace and using keywords) is a relatively new C++ feature, and not
supported in many compilers.

6.5 Don’t Put C++ Comments in C Code and Headers

Never use C++ comments in C code - not all C compilers/preprocessors understand them. (Yes, this works for
Microsoft Visual C/C++, but it is not supported by many of compilers — don't go there.)

Many header files will also be included both by C files and C++ files. Use this same rule with header files. Don't put
any C++ “//" style comments in .h header files that might be included by C files. You might argue that you could
use C++ style comments inside #1ifdef cplusplus blocks, but these will not work in all cases (some compilers
have weird interactions between comment stripping and pre-processing). It's not worth the effort and risk. Stick to
C style /**/ comments only for any header file that may ever likely to be included by a C file. To keep things simple:

e Use™//" style comments only in C++ .cpp and .hpp files
(.hpp files may only be included in .cpp and other .hpp files) .

e Use“/* /" comments in C.cand .h files (also .cpp and .hpp if you wish)
(.h files may be included from either .cpp, .hpp, .c or other .h files).

Metagraphics Programming Guidelines 23

6.6 Make C Header Files Compatible with C and C++

Make the header files work correctly when included by both C and C++ files. If you include an existing C header in
new C++ files, fix the C header file to work properly with both C and C++.

Poor — don't just extern "C" {} old header files in your .cpp program:

/* oldCheader.h */
int existingCfunction(char *);
int anotherExistingCfunction(char *);

/* oldCfile.c */
#include "oldCheader.h"

// new file.cpp

extern "C" // poor — don’t just extern C in your .cpp file
{

#include "oldCheader.h"

}i

Correct — Update C header files to work properly both C and C++:

/* oldCheader.h */

#ifdef cplusplus

extern "C" { /* correct - insert extern C in the .h file to make */
#tendif /* the header directly compatible with both C & C++ */
int existingCfunction(char *);

int anotherExistingCfunction(char *);

#ifdef cplusplus

}

#endif

/* oldCfile.c */
#include "oldCheader.h"

// new file.cpp
#include "oldCheader.h"

6.7 Manually Initialize Automatic Array Variables
Initialization of non-static automatic array variables is not supported in some compilers. For example:

void FuncFoo () /* non-portable!!! */
{ /* some compilers can not initialize automatic array variables */
int myArrayl[] = { 1, 2, 3 };

}

will fail to compile with HP-UX C++ compiler. Only use array initializers with static or static const arrays. If
you meant the array to be static or static const, specify it as such. Otherwise, you should manually initialize
each array variable by hand:

void FuncFoo () /* portable */
{/* initialized once - changes carry over between multiple calls */

static int myArray(] = { 1, 2, 3 };

}

or,
void FuncFoo () /* portable */
{/* initialized once - const elements can not be changed */

static const int myArrayl[] = { 1, 2, 3 };

24 Metagraphics Programming Guidelines

}
or,
void FuncFoo () /* portable */
{/* manually initialize array variables for every call */
int myArrayl[3];

myArray[0]=1;
myArray[1l]1=2;
myArray[2]=3;

7 Windows Programming

7.1 SourceSafe Files
For Windows C and C++ projects, the following files should be checked into source control:

Check In:

.dsw — Workspace file

.dsp — Project file(s)

*.cpp, *.c, *.hpp, *.h, *.rc, resource.h — Source files
.obj or .1ib —any that aren't built within the project

. doc — Documentation files

Don’t Check In:

. ob7j — project compiled object modules

. idb — partial debugger info (used by linker)

.pdb — debug info

.opt — options file (window size/position, menu views, doc views, etc.)
.plg — IDE build log

.ncb — no-compile browser (ClassView)

.pch — pre-compiled headers

. i1k — incremental linker temp file

7.2 Visual C++ #pragma’'s

Compile at Maximum Warning Level 4

To the maximum extent possible, write your code to compile both totally error and warning free. In this regard,
compile at the highest warning level possible, Warning Level 4, to allow the compiler to perform the maximum
amount of error checking. Unfortunately, Microsoft's Operating Systems Group doesn't share these sentiments about
Warning Level 4, and many of the Windows header files and Windows macros generate extraneous warning
messages due to unconventional coding techniques. The following "#pragma" statements disable the compiler from
reporting certain Level 4 Warnings commonly generated from the Windows header files and macros. (Note -
pragma's that are // commented out below were reported as problems by Jeffrey Richter in his book "Advanced
Windows NT". We have not seen these warnings from Windows code as yet, and have left them as comments for
the time being.)

/* nonstandard extension 'single line comment' was used */
#pragma warning(disable: 4001)

/* indirection to slightly different base types */
//#pragma warning (disable: 4057)

Metagraphics Programming Guidelines 25

/* unreferenced formal parameter */
#pragma warning (disable: 4100)

/* named type definition in parentheses */
//#pragma warning (disable: 4115)

/* conditional expression is constant (_ASSERT macro) */
#pragma warning (disable: 4127)

/* nonstandard extension used : nameless struct/union */
/* (winnt.h,winbase.h,mmsystem.h) */
#pragma warning (disable: 4201)

/* nonstandard extension used : benign typedef redefinition */
//#pragma warning (disable: 4209)

/* nonstandard extension used : bit field types other than int */
//#pragma warning (disable: 4214)

/* unreferenced inline function has been removed */
#pragma warning (disable: 4514)

/* Note: Creating precompiled header */
//#pragma warning (disable: 4699)

You can also use #pragma warning (push) and #pragma warning (pop) to save and restore the current
warning state (see “#pragma” documentation on the MSDN Library CD for more information).

Specify Default Libraries

Use a #pragma comment (1ib, “libname”) statement in your header files to specify which default libraries are
needed when linking your program. For Visual C++, this #pragma inserts a special comment into the .obj files that
tells the linker which default libraries are required. Rather than generating a list of ambiguous “unresolved external”
errors, the linker will automatically link the library, or it will print an error message with the missing library name if it
can't be found in one of the default paths.

#pragma comment (lib,”comctl32.1ib”) /* common controls 1ib must be linked */

Compile-Time Messages

You can mark a location in your code with a compile-time message using the #pragma message (
messagestring) statement. The message shows is displayed in the compiler display window, but does not effect
the compile. This is handy when you need to leave yourself a reminder of a code area that you need to come back
to. #pragma messages can also include a reference to the specific filename and line number:

#pragma message(“Don’t forget to come back and test the code logic here”)
#pragma message(“Additional code logic needed here -” FILE = LINE)

7.3 Windows Timers and Timing

Basic Timers — SetTimer () and KillTimer ()

SetTimer () and KillTimer () set up a timer to send a WM_TIMER message or to invoke a callback function.
These functions are easy to use, but the timing resolution of the messages coming back is not very accurate.
SetTimer() messages may be delayed and/or concatenated (interim messages lost). These timers provide a general
resolution of 20ms under Windows 95, and 5ms under Windows 98. These functions should not be used time-critical
operations.

26 Metagraphics Programming Guidelines

Multimedia Timer — timeGetTime ()

The Windows multimedia function timeGetTime () returns the time from system startup in milliseconds (wraps
about every 50 days). This timer has a resolution of ~1ms for Windows 98, and ~5ms for Windows NT4 (under NT
the resolution can also be changed).

High Performance Timer — QueryPerformanceCounter ()

The new Win32 high performance timing functions, QueryPerformanceCounter () and
QueryPerformanceFrequency (), provide high performance and high resolution timing accurate to 0.8ms or
better. The one downside of these functions is that they are only supported when running on a Pentium processor
or better (these functions use the new Pentium RDTSC instruction). To operate on other machines you need to code
default logic using timeGetTime () if you're running on a non-Pentium machine and QueryPerformanceCounter()
isn't supported.

INT64 performanceFreq;
static int msPerPerformanceCount
static BOOL hiResTimerSupported;

hiResTimerSupported = QueryPerformanceFrequency(&performanceFreq);
if (hiResTimerSupported)

{ /* QueryPerformanceCounter () supported */
msPerPerformanceCount = 1000.0F/performanceFreq;
}
else
{ /* QueryPerformanceCounter () not supported, must use timeGetTime () instead */
if (_WINNT)
msPerPerformanceCount = 5;

else /* WIN98*/
msPerPerformanceCount

1;
}

Here's an outline of a sample piece of code to calculate the number frames per second:

void Render ()

{

static INT64 startCount, stopCount, previousCount;
int framesPerSecond;

if (hiResTimerSupported)
QueryPerformanceCounter (&startCount);
else
startCount = timeGetTime () ;

/* a bunch of code here to render the scene */
previousCount = stopCount;

if (hiResTimerSupported)
QueryPerformanceCounter (&stopCount);

else

stopCount = timeGetTime () ;
msTimeToRender = msPerPerformanceCount * (stopCount - startCount);
framesPerSecond = 1.0f /

(1000.0*msPerPerformanceCount * (stopCount-previousCount));

7.4 Drawing With GDI and DirectX

GDI and DirectX (and its components DirectDraw, Direct3D, DirectSound) are the major display drawing interfaces
when working under Windows. GDI (Graphics Device Interface) is the original and most commonly interface for
drawing to display devices.

Metagraphics Programming Guidelines 27

Why use GDI?

e Because it's there.

e It's well understood.

e It offers lots of functionality (text, 2D stuff)
e It works.

It's ok for non-realtime rendering.

Why Not Use GDI?

e It was written by 1000 monkeys.
e It'sincredibly slow.

e It's very cumbersome needing to continually rely on DC’s

For Fastest Performance Use DirectX
For real-time rendering, DirectX offers several major performance advantages:

e Provides nearly direct access to the hardware
e Allows you to configure the display however you like.
e You can mix GDI calls with DirectX.

e You get access to 2D/3D hardware acceleration, true alpha blending, 3D and video!
(every new PC shipping today contains a reasonably good 2D/3D accelerator chip)

28 Metagraphics Programming Guidelines

Appendix A - Computational Data Types

An additional set of computational data types are frequently used for graphic and display drawing operations. These
computational data types include:

Fixed-Point Data Types (defined in mgtypes.h)

Data Type Win32 Type ‘ Description
F2DOT14 short Signed 2.14 fixed-point fractional integer (16-bits)
F12DOT4 short Signed 12.4 fixed-point fractional integer (16-bits)
F26DOT6 long Signed 26.6 fixed-point fractional integer (32-bit)

<& FIXDOT int F12DOT4 or F26D0T6 depending if int is 16- or 32-bits.

< Indicates machine-dependent variable size data type.

The F2poT14 (“fixed-point 2.14") data type consists of a signed 2-bit mantissa and a positive unsigned 14-bit
fraction (16-bits total). This data type is used for unary vectors, sine and cosine values, and scaling coefficients. To
compute the decimal value, add the positive fraction to the signed mantissa. Examples of F2D0T14 values are:

Decimal Value Hex Value Mantissa Fraction
0.0 0x0000 0 +0/16384
0.000061035 0x0001 0 +1/16384
0.25 0x1000 0 +4096/16384
0.5 0x2000 0 +8192/16384
1.0 0x4000 1 +0/16384
1.75 0x7000 1 +12288/16384
-1.0 0xC000 -1 +0/16384
-0.5 0xEQ000 -1 +8192/16384
-2.0 0x8000 -2 +0/16384
+1.999938964 Ox7FFF +1 +16383/16384

The r12D0T4 (fixed-point 12.4) data type consists of a 12-bit signed mantissa and a positive unsigned 4-bit fraction
(16-bits total). This data type is typically used to define fractional pixel positions on 16- and 8-bit processors. To
compute the decimal value, add the positive fraction to the signed mantissa. Examples of F12D0T4 values are:

Decimal Value Hex Value Mantissa Fraction
0.0 0x0000 0 +0/16
0.0625 0x0001 0 +1/16
0.25 0x0004 0 +4/16
0.5 0x0008 0 +8/16
1.0 0x0010 1 +0/16
1.75 0x001C 1 +12/16

-1.0 0xXFFFO0 -1 +0/16

-0.5 O0xFFF8 -1 +8/16

-2048.0 0x8000 -2048 +0/16

+2047.9375 Ox7FFF +2047 +15/16

Metagraphics Programming Guidelines 29

The F26D0T6 (fixed 26.6) data type consists of a 26-bit signed mantissa and a positive unsigned 6-bit fraction (32-
bits total). This data type is typically used to define fractional pixel positions on 32- and 64-bit processors. To
compute the decimal value, add the positive fraction to the signed mantissa. Examples of #26D0T6 values are:

Decimal Value Hex Value Mantissa Fraction
0.0 0x00000000 0 +0/64
0.015625 0x00000001 0 +1/64
0.25 0x00000010 0 +16/64
0.5 0x00000020 0 +32/64
1.0 0x00000040 1 +0/64
1.75 0x00000070 1 +48/64

-1.0 OxXFFFFFFCO -1 +0/64

-0.5 0xFFFFFFEO -1 +32/64

-33,554,432.0 0x80000000 -32,554,432 +0/64

+33,554,431.984375 Ox7FFFFFFF +33,554,431 +63/64

FIXDOTX is a conditional data type defined to either F12D0T4 or F26DOT6 dependent on the native size of type
int. For 16-bit compilers, FIXDOTX is defined equivalent to F12D0T4. For 32- and 64-bit compilers FIXDOTX is
defined equivalent to F26D0T6. This data type is typically used to define fractional pixel and angular measurements
in a portable, computationally efficient format. Note that care must be taken in using the F1XDOTX type since the
16-bit F12D0T4 data type can only hold a maximum value of 2047.9375).

30

#if
#define

sizeof (int) == 2
FIXDOT F12DOT4

#elif
#define

sizeof (int) >= 4
FIXDOT F26DOT6

ffelse
#ferror "Unsupported 'int'
#fendif

size!™

Metagraphics Programming Guidelines

Fixed-Point Macros (defined in mgtypes.h)
The Metagraphics header file, mgtypes.h, defines a standard set of macros for use with fixed-point data types:

/* F12DOT4 fixed-point macros - - — — — = = = — — — — — — — */

/* convert integer to fixed-point F12.4 */
#define IntToFl2 (intValue) (F12DOT4) (intValue << 4)

/* round fixed-point fl2Value to integer */
#define F12ToInt (fl2Value) (INT) ((f12Value + 0x08) >> 4)

/* truncate fixed-point fl2Value to integer */
#define F1l2TruncTolInt (£26Value) (INT) ((fl12Value) >> 4)

/* floor fl2Value to next lowest integer value */
#idefine F12Floor (fl2Value) (F12DOT4) ((fl2vValue) & -16)

/* ceil fl2Value to next largest integer value */
f#idefine F12Ceil (fl2Value) (F12DOT4) (((fl2value)+15) & -16)

/* F26DOT6 fixed-point macros - - — — — = = — — — — — — — — */

/* convert integer to fixed-point F26.6 */
#define IntToF26 (intValue) (F26DOT6) (intValue << 6)

/* round fixed-point f26Value to integer */
#define F26TolInt (f26Value) (INT) ((f26Value + 0x20) >> 6)

/* truncate fixed-point f26Value to integer */
#define F26TruncTolInt (£26Value) (INT) ((f26Value) >> 6)

/* floor f26Value to next lowest integer value */
#define F26Floor (f26Value) (F26DOT6) ((f26Value) & —-64)

/* ceil f26Value to next largest integer value */

#define F26Ceil (f26Value) (F26DOT6) (((f26Value)+63) & —-64)
/* FIXDOTX fixed-point macros - — — — — — — — — — — — — — — */
#if sizeof (int) == 2

#define FIXDOT F12DOT4

f#idefine IntToFix IntToF12

#idefine FixTolInt Fl2ToInt

#idefine FixTruncToInt F12TruncTolnt

#idefine FixFloor Fl2Floor

#idefine FixCeil Fl2Ceil

#elif sizeof(int) >= 4

#define FIXDOT F26D0OT6
#idefine IntToFix IntToF26
#idefine FixTolInt F26ToInt
#idefine FixTruncToInt F26TruncTolnt
#idefine FixFloor F26Floor
f#idefine FixCeil F26Ceil

#telse

#ferror "Unsupported 'int' size!"
#tendif

Metagraphics Programming Guidelines

Appendix B - MRESULT Function Return Codes

Most Metagraphics functions provide back an "MRESULT” completion code when a function returns. The MRESULT
return code is either 16- or 32-bits, dependent on the native integer size for the compiler and target platform.
MRESULT is conditionally defined to MRESULT16 or MESULT32 depending on the integer byte size:

#idefine MRESULT16
#define MRESULT32

signed short
signed long

#if
##define
ffelif
#define
ffelse
#ferror "Unsupported 'int'
#fendif

sizeof (int) ==
MRESULT MRESULT16

sizeof (int) >= 4
MRESULT MRESULT32

size!™

MRESULT Coding

(defined in merror.h)

Non-zero MRESULT32 return values return an error code, internal tag location, facility or library, and function ID:

3322
1098

2222
7654

2222 1111 1111
3210 9876 5432

11
Bit:

1098 7654 3210 MRESULT32 signed integer

success (0) or fail(l)
informational (0) or warning(1l)
error code (0-1023)

tag location (0-15)

group* (0-63)

function (0-1023)

Non-zero MRESULT16 return values return an error code and internal tag location:

or warning (1)

1111 11

Bit: 5432 1098 7654 3210 MRESULT16 signed integer
S——— ———— ———= ———— success (0) or fail(l)
-i-- =-=-——- —-——- —-—-—— informational (0)
-—ee eeee eeee —--—-- error code (0-1023)

tttt tag location (0-15)

* The following groups are currently defined:

0 = Application

1 = Metagraphics MetaWINDOW library
2 = Metagraphics Media!Lab library

3 = Metagraphics Media!Key library

4 = Metagraphics TypeServer library

32

Metagraphics Programming Guidelines

Appendix C - Global Utility Functions and Macros

Metagraphics header files include a series global utility functions and macros to simplify and standardize common
operations. Depending on the target platform and optimization, these may either be implemented as #define
macros, inline functions or standard C functions.

General Utility Functions (defined in metincs.h)

_ZeroMemory()

/* clear a block of memory to zero */
inline void ZeroMemory(void *memory, size t byteCount)

_ZeroStruct()

/* clear a structure to zero */
#define _ZeroStruct (structure) _ZeroMemory (structure, sizeof (* (structure)))

_InitStruct() — Zero a structure and set the structSize member

/* Clear a structure and initialize the first member to the size of the structure */

#define InitStruct (structure) ({ \
_ZeroMemory (& (structure), sizeof (structure)); \
(int) & (structure) = sizeof (structure); \
}

countof() / _ArrayCount()

/* count the number of elements in an array */

#define countof (array) (sizeof (array) / sizeof((array) [0]))
#define ArrayCount (array) (sizeof (array) / sizeof((array)[0]))
_InRange()

/* this macro evaluates TRUE of val is between lo and hi inclusive */
#define InRange (lo, val, hi) (((lo) <= (val)) && ((val) <= (hi)))

_FourCC()

/* pack 4 character codes into an INT32 */

#define FourCC(ch0, chl, ch2, ch3) \
((INT32) (BYTE) (chO) | ((INT32) (BYTE) (chl) << 8) | \
((INT32) (BYTE) (ch2) << 16) | ((INT32) (BYTE) (ch3) << 24))

_ASSERT() / ASSERT()

C ASSERT () and C++ ASSERT () macros test if an expression is TRUE (non-zero) or FALSE (zero). If FALSE, the
assert macro displays a message box indicating the file name, line number and the expression that failed. Assert
macros are only active in debug builds where *_DEBUG” is defined. In release builds, assert statements are removed
by the compiler preprocessor. For this reason, assert statements should not perform any operations or function calls
that are needed for normal execution. (_ ASSERT () /ASSERT () are predefined within Windows crtdbg.h.)

/* display a message box if an assertion fails in a debug build */
#ifdef _DEBUG

#define ASSERT(x) if (!(x)) _ASSERTFAIL(FILE , LINE , #x)
#else /* RELEASE */

#define ASSERT (x)

#endif /* DEBUG */

Metagraphics Programming Guidelines 33

FAILED() / SUCCEEDED() / WARNINGFREE()
FAILED (), SUCCEEDED () and WARNINGFREE () macros should be used to make status testing i f, ASSERT and
_ ASSERT statements more readable.

/* Test for result failure. Negative values indicate failure. */
#define FAILED (status) ((MRESULT) (status) < 0)
/* Test for result success. Non-negative values indicate success. */
#idefine SUCCEEDED (status) ((MRESULT) (status) >= 0)

/* Test for result success. Zero value indicates error and warning free. */

#define WARNINGFREE (status) ((MRESULT) (status) ==)
/* Test for result success. Non-zero value indicates error or warning. */
#idefine NOTWARNINGFREE (status) ((MRESULT) (status) != 0)

Windows Utility Functions

MessageBox() — Quick Windows MessageBox() macro

// quick MessageBox () macro

#define MessageBox(str) {
TCHAR szTMP[256];
GetModuleFileName (NULL, szTMP, mARRAYCNT (szTMP)) ;
MessageBox (GetActiveWindow (), str, szTMP, MB OK);
}

—

_MSG — Windows #pragma message() macro

// _MSG - #pragma message () reminder macro (for compile-time messages)

// When the compiler sees a line like this: #pragma MSG(Fix this later)

// it will output a line like this: C:\medialab\src\xxx.h(304) :Fix this later
#define STR(x) #x

#define STR2 (x) _STR(x)

#define MSG(desc) message(FILE "(" STR2(_ LINE) "):" #desc)

_HANDLE_DLGMSG() — Message cracker handler for dialog box messages

// The normal HANDLE MSG macro in WINDOWSX.H does not work properly for dialog
// boxes because DlgProc returns a BOOL instead of an LRESULT (like WndProcs).
// The following HANDLE DLGMSG macro corrects the problem:

#define HANDLE DLGMSG (hwnd, message, fn) \
case (message): return (SetDlgMsgResult (hwnd, uMsg, \
HANDLE ##message ((hwnd), (wParam), (lParam), (fn))))

34 Metagraphics Programming Guidelines

Appendix D - Directory And Filename Conventions

For compatibility with SourceSafe, project directories and files should be organized with the following general
directory structure in mind.

3 \dev root level development directory
3 _bin shared utilities
3 _doc shared doc files
3 _help shared help files
3 _include shared include files
3 _lib shared lib files
(23 medialab a project
23 bin product and utility executables

23 disk release disk images
23 doc public product documentation files
(23 examples public example programs
3 _media shared media for sample programs
3 examplel example program 1 source code
(3 example2 example program 2 source code
3 example’n’ example program ‘n’ source code, etc.
(3 help public product help files
(23 include public product include files
23 install install build procedures
3 Iib public product library files
(X3 notes internal development notes
[Z3 incidents incident and bug reports
3 src project source code,
(23 debug debug files
(3 release release files
3 test test programs source code
3 _media shared media for test programs
(I3 test1 test program 1 source code
(3 test2 test program 2 source code
(I3 test'’n’ test program 'n’ source code, etc.
(23 utilities utility programs source code
(I3 utill utility program 1 source code
(X3 util2 utility program 2 source code
3 util'n’ utility program *n’, etc.

Valid Folder and File Name Characters

For compatibility with Windows and other systems, file and folder names should be less than 31 characters (including
extensions), should not start with a digit or period, and should only contain the following characters:

a-z A-Z 0-9 . (period) _ (underscore) - (dash)

Avoid Spaces in Folder and File Names

Referencing hyperlinks to file names with spaces can be problematic. For this reason, using spaces within file names
is not recommended. Leave out the spaces, or use underbars *_" or dashes “-" instead.

Use Lowercase Folder and File Names

In referencing a file, casing may not be obvious and, depending on the operating system, may or may not be unique.
Folder names and file names should be all lower case, using underscores or dashes if necessary.

Metagraphics Programming Guidelines 35

Appendix E - C Source File Template

/******)(‘*)(‘*)(‘*)(‘***)(‘***

* template.c - Metagraphics C Source File Template
Copyright (c) 2000 Metagraphics Corporation - All Rights Reserved

*
*
* *
* *
* The source code contained herein includes proprietary information of *
* Metagraphics Corporation. Use of this source code is strictly limited *
* under the terms of the Metagraphics Software License Agreement. This *
* source code may not be reproduced, copied or distributed, in whole or *
* in part, without the prior written consent of Metagraphics Corporation. *
* PP U U U PR U U U U PRI PR
* Description: A brief description can go here if needed *
* See Also: MetagraphicsCodingGuide.pdf *
* *

AAAA A A A A A A AA A A A A A A A A A A A A A A A A A AR A A A A A A A A A A A A A A A A A A AR A A A AL A A A A Ak b d ok h kb d ok bk k

*/
/* #include Libraries */

/* #include Interfaces */

/* STATIC VARIABLES (variables local to this file only) */
/* EXTERNAL VARIABLES (defined elsewhere and global to all files) */
/* STATIC FUNCTION PROTOTYPES (functions local to this file only) */
/* GLOBAL FUNCTION IMPLEMENTATIONS */

/* STATIC FUNCTION IMPLEMENTATIONS (functions local to this file only) */

2 —
FunctionName () - one line description
*
* Description:
* Multiple line description of function, parameters and return value.
*
* Comments:
* Additional comments or implementation notes.
S
*/
extern /* (‘extern’ or ‘static’ specifier) */
MRESULT FunctionName (/* return, result code (0O=success) */
{type} parameterl; /* input, parameterl description */
{type} parameter2; /* in/out, parameter2 description */
{type} parameter3) /* output, parameter3 description */

CodeGoesHere () ;

} /* FunctionName () */

/* End of File - template.c */

36 Metagraphics Programming Guidelines

Appendix F - C Header File Template

/**

* template.h - Metagraphics C Header File Template
Copyright (c) 2000 Metagraphics Corporation - All Rights Reserved

*
*
*
*
The source code contained herein includes proprietary information of *
Metagraphics Corporation. Use of this source code is strictly limited *
under the terms of the Metagraphics Software License Agreement. This *
source code may not be reproduced, copied or distributed, in whole or *
in part, without the prior written consent of Metagraphics Corporation. *
_ e m e e e e e e e e e e e e e e m — m — — — — — — — — e — = = %
Description: A brief description can go here 1f needed *
See Also: MetagraphicsCodingGuide.pdf *
*

*
*
*
*
*
*
*
*
*
*
*
LR S S S i i i i i S i i i i i i i S b i i i i i b i b i i i b g b i b i b b b b b e i i b b i b i i i b b b i b b b b b b b b g

*/

#ifndef TEMPLATE H /* */
#define TEMPLATE H /* (don't include twice) */

#pragma once

/*#include’s for other header files */
#ifdef __cplusplus

extern "C" { A T R 4
#endif /* cplusplus*/

/* constants */

/* macros */

/* typedefs */

/* global variables */

/* function prototypes */

#ifdef __cplusplus

) A e

#endif /* cplusplus*/

#endif /*TEMPLATE H /* */

/* End of File - template.h */

Metagraphics Programming Guidelines

37

Appendix G - C++ Source File Template

//***

// template.cpp - Metagraphics C++ Source File Template *
/7 *
// Copyright (c) 2000 Metagraphics Corporation - All Rights Reserved *
/7 *
// The source code contained herein includes proprietary information of *
// Metagraphics Corporation. Use of this source code is strictly limited *
// under the terms of the Metagraphics Software License Agreement. This *
// source code may not be reproduced, copied or distributed, in whole or *
// in part, without the prior written consent of Metagraphics Corporation. *
Y e e i
// Description: A brief description can go here if needed *
// See Also: MetagraphicsCodingGuide.pdf *

*

//*****)(‘*)(‘***)(‘**

// #include Libraries

// #include Interfaces

// static variables

// static function prototypes
// public methods

// private methods

// static functions

2 R —————————————————
* FunctionName () - one line description
*
* Description:
* Multiple line description of function, parameters and return value.
*
* Comments:
* Additional comments or implementation notes.
A e e e e o o o
*/
extern // (‘extern’ or ‘static’ specifier)
MRESULT ClassName :: MethodName (// return, result code (O=success)
{type} parameterl; // input, parameterl description
{type} parameter?2; // in/out, parameter? description
{type} parameter3) // output, parameter3 description

CodeGoesHere () ;

} // MethodName ()

/* End of File - template.cpp */

38 Metagraphics Programming Guidelines

Appendix H - C++ Header File Template

//***

// template.hpp - Metagraphics C++ Header File Template

/7

// Copyright (c) 2000 Metagraphics Corporation - All Rights Reserved
/7

// The source code contained herein includes proprietary information of
// Metagraphics Corporation. Use of this source code is strictly limited
// under the terms of the Metagraphics Software License Agreement. This

// source code may not be reproduced, copied or distributed, in whole or
// in part, without the prior written consent of Metagraphics Corporation.

// Description: A brief description can go here if needed
// See Also: MetagraphicsCodingGuide.pdf

EE S S T S

*

*

*

//***)(‘*)(‘*)(‘*)(‘*)(‘***

#ifndef TEMPLATE HPP //
#define TEMPLATE HPP // (don't include twice)

#pragma once
// include libraries
// constants
// macros
// typedefs
// class declarations:
// one line class description
class ClassName : public COtherClass
{ // public methods
// public variables
// protected variables
// protected methods
// private methods

// private variables

}; // class ClassName

#endif //TEMPLATE HPP //

/* End of File — template.hpp */

Metagraphics Programming Guidelines

39

Appendix I - Writing Code for ASCII & Unicode Language Portability

Writing for ASCII & Unicode Language Portability

As the need to broaden applications onto new platforms and into new markets expands, designing code for ASCII
and Unicode language portability becomes a growing importance. Just as familiarity in using int, short and long
integer types is important for designing platform portable code, basic familiarity in handling different character types
is important for designing language portable code.

While many compiler and operating systems remain 8-bit ASCII orientated, a growing number of platforms are now
also using 16-bit Unicode as a language standard. To be truly platform independent your C/C++ application needs
to be capable of compiling and running in both ASCII and Unicode based environments. In addition, there will be
cases when working on an ASCII-based platform where you may need to handle Unicode-specific text, and vice-versa
on a Unicode-based platform where you may need to handle ASCII-specific text. The desired goal is to maintain a
single source code base that is portable to any platform, and that supports both specific ASCII and Unicode needs
when required.

Similar to size-specific INT16 (short), INT32 (long) and generic INT (int) types for integer uses, the basis for
language portability for text starts with the definition of three basic character types: size-specific CHAR (8-bit),
WCHAR ("wide" char 16-bit, wchar t), and generic TCHAR (conditional 8- or 16-bit).

Data Type Win32 Type Description
CHAR char 8-bit ASCII character
WCHAR wchar_t 16-bit Unicode character
<>TCHAR char or wchar t |[8- or 16-bit character, depending if "UNICODE" is defined

<> Indicates variable size platform-dependent conditional data type.

" _UNICODE” or "UNICODE” ? In working with many systems, you will see conditional #ifdef’s and #ifndef’s
based on identifiers *_un1CODE"” and “"UNICODE" (either with and without a leading underbar). Normally symbols
starting with an underbar are reserved for ANSI C identifiers, but in practice both * UNICODE” and “UNICODE” are
largely used interchangeably for Unicode conditionals. To keep these identifiers in sync, header files referencing
these keywords usually start with the following conditional defines (contained in mgstring.h):

/* synchronize UNICODE identifiers */

#if defined(UNICODE) && 'defined (UNICODE)
#define UNICODE

#endif

#if defined (UNICODE) && !'defined(UNICODE)
#define UNICODE
#endif

In many cases we've also chosen to doubly define and drop leading underbars from other identifiers such as TCHAR
and TEXT. The more important issue is consistency, readability and simplicity. Trying to remember which
identifiers start with an underbar and which don't is one less headache to avoid.

40 Metagraphics Programming Guidelines

CHAR, WCHAR and TCHAR types

CHAR is the 8-bit ASCII-specific character type, and wcHAR ("wide char") is a 16-bit Unicode-specific character type.
TCHAR (generic "text char") is a platform dependent character type that is conditionally equal to either CHAR on
ASCII platforms, and equal to wCHAR on Unicode platforms. The defined identifier "uUNTCODE" is used to identify if
the native environment is a Unicode based platform. If uNICODE is undefined, then TCHAR is defined equated to
ASCII CHAR; if UNICODE is defined, TCHAR is equated to Unicode WCHAR.

typedef char CHAR; /* 8-bit ASCII character */
typedef wunsigned short WCHAR; /* 16-bit Unicode character (wchar t) */

#ifndef UNICODE

typedef CHAR TCHAR; /* platform is 8-bit ASCII characters */
#telse /*ifdef UNICODE*/
typedef WCHAR TCHAR /* platform is 16-bit Unicode characters */

#endif /*UNICODE*/

Literal Characters

The standard C/C++ single-quote () method for specifying a single literal character works for all three character data
types:

CHAR charASCII = 'A'; /* this is an 8-bit ASCII character */
WCHAR charUnicode = 'B'; /* this is a 16-bit Unicode character */
TCHAR charSystem = 'C'; /* ASCII or Unicode depending on platform */

The variable charUnicode will be a 16-bit value 0x0042, which is the Unicode representation for the letter B.
(Keep in mind that Intel processors store multibyte values with the least significant bytes first, so the bytes are
actually stored in memory in the sequence 0x42, 0x00 - remember this when examining a hex dump of Unicode text
in memory.)

Literal Strings

Literal ASCII CHAR Strings

Using the standard C/C++ double-quote (") method for specifying literal strings works for ASCII only, but will not
work for Unicode character strings.

CHAR strASCII[] = "this is an ASCII string of 8-bit characters";

Literal Unicode WCHAR Strings

The ANSI C extension for defining literal Unicode strings is to precede the first double-quote with the capital letter .
(as in "Long"). The L preceding the first double-quote is required, and there cannot be any spaces between the 1.
and the first double-quote. The 1 tells the compiler that you want the string to be stored as 16-bit wcHAR
characters.

WCHAR strUnicode[] = L"this is a Unicode string of 16-bit characters";

Literal Generic TCHAR Strings

For the conditional TCHAR character type, we need a method to conditionally define strings either as an 8-bit ASCII
CHAR string, or as a 16-bit Unicode WCHAR string. A method to handle this is to define a special TEXT () macro that
performs this function.

Metagraphics Programming Guidelines 41

#ifndef UNICODE

#define T(s) s /* platform is ASCIT */
#else /* ifdef UNICODE */
#define T(s) L##s /* platform is Unicode */

#endif /*UNICODE*/

#define TEXT(s) _ T(s)

L##s uses the ANSI C ## "token paste" operator to have the C preprocessor concatenate the letter 1. with the token
quoted string s. With the above #define TEXT () macro we can now specify TCHAR strings that are conditionally
either ASCII or Unicode based on the target platform:

TCHAR strSystem[] = TEXT("ASCII or Unicode string depending on platform");

String Format Conversion Functions

For non-literal text, format conversion functions can be used when needed to convert 8-bit ASCII text to 16-bit
Unicode, or vice-versa to convert 16-bit Unicode text to 8-bit ASCII. In converting 16-bit Unicode to 8-bit ASCII, of
course, Unicode characters above 255 must be stripped to the smaller 8-bit ASCII range. For simplicity, Unicode
characters above 255 are usually simply converted to ASCII “space” characters. Two functions are used for string
format-conversion and copy operations:

/* StrnCvtAW() - Convert 8-bit Ascii string to 16-bit Unicode string */

WCHAR *StrnCvtAW (/* return, ptr to destination Unicode string, wStr */
WCHAR *wStr, /* output, destination Unicode string */
const CHAR *aStr, /* input, source Ascii string */
UINT nwChars);/* input, # of WCHARs in destination wStr buffer */

/* StrnCvtWA() - Convert 16-bit Unicode string to 8-bit Ascii String */

CHAR *StrnCvtWA (/* return, ptr to destination Ascii string, aStr */
CHAR *aStr, /* output, destination Ascili string */
const WCHAR *wStr, /* input, source Unicode string */
UINT naChars);/* input, # of CHARs in destination aStr buffer */

StrnCvtAW () and StrnCvtWA () operate similar to the standard ANSI C library string copy functions strncpy ()
and wesncpy () for copying ASCII and Unicode strings, respectively. strnCvtAwW () and StrnCvtWA (), however
perform the additional character format-conversion operation (implementation of StrnCvtAwW () and StrnCvtWA ()
is provided in mgstring.c).

For use with the generic TCHAR type, simple #define’s are used to assign the appropriate conversion function for
formatting and copying ASCII CHAR or Unicode WCHAR strings to and from generic TCHAR strings:

#ifndef UNICODE /* platform/TCHAR is 8-bit ASCIT */

#define StrnCvtAT strncpy /* copy ASCII to TCHAR (ASCII) */
##define StrnCvtWT StrnCvtWA /* copy Unicode to TCHAR (ASCII) x/
#define StrnCvtTA strncpy /* copy TCHAR (ASCII) to ASCII */

##define StrnCvtTW StrnCvtAW /* copy TCHAR (ASCII) to Unicode x/

#felse /* ifdef UNICODE - platform/TCHAR is 16-bit Unicode */
#idefine StrnCvtAT StrnCvtAW /* copy ASCII to TCHAR (Unicode) */

#define StrnCvtWT wcsncpy /* copy Unicode to TCHAR (Unicode) */
#define StrnCvtTA StrnCvtWA /* copy TCHAR (Unicode) to ASCII */
#define StrnCvtTW wcsncpy /* copy TCHAR (Unicode) to Unicode */

#endif /*UNICODE*/

The six format conversion functions outlined above provide the means to convert and copy any string type, ASCII,
Unicode or generic TCHAR, to any other string type.

42 Metagraphics Programming Guidelines

String Library Functions

In addition to the basic character types, literal specifiers and format-conversion functions, we also need support for
common ANSI C library string manipulation functions. The latest ANSI C string.h header file fortunately includes
library definitions supporting functions for both 8-bit ASCII and 16-bit Unicode. Similar to the strlen () function
that returns the number of characters in an ASCII string, ANSI C now also provides a wcslen () function that
returns the number of characters in a Unicode string (this is very important since the ASCII strlen () function will
not return the proper length of a Unicode string!). There is a similar matching Unicode function for most of the
standard ASCII string functions. For use our generic TCHAR type, a third set of functions needs to be defined based
on the “unICcoDE"” keyword. The following table summarizes the data types and function names provided through
mgstring.h for each of the type-specific CHAR and WCHAR types, and also for our generic TCHAR type.

Trying to make sense of the names for the standard C string library functions can be a challenge at times. Unicode
function names add further complications by embedding a “w” (“wide” designation) sometimes at the beginning,
sometimes in the middle, and sometimes at the end of the ASCII function name. With over 100 ASCII and Unicode
library function names to deal with, adding another 50+ names for generic TCHAR functions makes C string library
names begin to look like alphabet soup.

For simplicity we've adopted a mixed-case naming convention based on the original ASCII function names that most
C/C++ programmers already know. Mixed-casing helps make the names more readable and easier to remember. To
differentiate type-specific ASCII and Unicode functions, the mixed-case names are simply appended with an “A” or
“W" depending if the function takes ASCII or Unicode arguments. For generic TCHAR functions, where the function
arguments may be either ASCII or Unicode (depending if “UNICODE" is defined or not), the function names are
defined without a specific appended type.

In certain cases some names have also been expanded for better clarity - for example, atoi () and wtoi () were
renamed StrToIntA (), StrToIntW () and StrToInt () for ASCII, Unicode and generic TCHAR functions,
respectively. While you can still use the original standard C string library function names, the following function
names defined through mgstring.h are generally easier to read, understand and remember.

ASCII Unicode Generic
character size 8-bit 16-bit 8- or 1l6-bit
type CHAR WCHAR TCHAR
literal character v 'Y vt
literal string "o L. TEXT("...")

. StrLenA() StrLenW () StrLlen()
get character string length strlen () weslen () StrLenT ()

. . StrChrA () StrChrW () StrChr ()
find character in string strehr () weschr () StrChrT ()
find character. ianore case StriChrA() StriChrW() StriChr ()

19 _strichr() _wecsichr () StriChrT ()
reverse-find character StrrChrA() StrrChrW() StrrChr ()
strrchr () wcsrchr () StrrChrT ()
. StrStrA() StrStrW() StrStr()
find SUbStrmg strstr () wcsstr () StrStrT ()
. StrCpyA() StrCpyW () StrCpy ()
copy string strcpy () wescepy () StrCpyT ()

Metagraphics Programming Guidelines

43

44

. StrnCpyA () StrnCpyW () StrnCpy ()
copy string, w/max strncpy () wcsnepy () StrnCpyT ()
convert string, ASCII to ... StrnCpyA () StrnCvtAW () StrnCvtAT()
convert string, Unicode to ... StrnCvtWA () StrnCpyW () StrnCvtWT ()
convert string, TCHAR to ... StrnCvtTA() StrnCvtTIW() StrnCpy ()
concatenate strin StrCatA() StrCatw() StrCat ()

g strcat () wcscat () StrCatT ()
concatenate string, w/max StrnCatA() StrnCatW() StrnCat ()
9 strncat () wcsncat () StrCatT ()
. StrCmpaA () StrCmpW () StrCmp ()
compare Stnng strcmp () wcscmp () StrCmpT ()
. StrnCmpA () StrnCmpW () StrnCmp ()
compare Stnng’ w/max strncmp () wcsnemp () StrnCmpT ()
. . StriCmpaA () StriCmpW () StriCmp ()
compare strlng, Ignore case _stricmp 0 _wcsicmp 0 StricmpT ()
. StrniCmpA () StrniCmpW () StrniCmp ()
compare string, nocase, max _strnicmp () _wcsnicmp () StrniCmpT ()
. StrSpnaA () StrSpnW () StrSpn ()
get count of matching chars strspn () wesspn () StrspnT ()
. . StrcSpnaA () StrcSpnW() StrcSpn()
get matching char index strespn () wesspn () StreSpnT ()
StrTokA() StrTokW () StrTok ()
find next token strtok () wcstok () StrTokT ()

. StrpBrkA() StrpBrkW() StrpBrk()
locate matching character strpbrk () wespbrk () StrpBrkT ()
. . IsAlnumA () IsAlnumW () IsAlnum()

?
is alphanumeric character? fsalnum () fswalnum () TsAlnumT ()
. IsAlphaA() IsAlphaW() IsAlpha()
2
is alpha character? isalpha () iswalpha () IsAlphaT ()
. . . IsDigitA() IsDigitW() IsDigit()
-0)?
is decimal digit (0-9): isdigit () iswdigit () TsDigitT ()
. .. IsHexDigitA() IsHexDigitW() IsHexDigit()
- - -f)?
is hex digit (0-9, A-F, a-f)? isxdigit () iswxdigit () IsHexDigitT ()
is lowercase character? IsLowerA() IsLowerW() IsLower ()
: islower () iswlower () IsLowerT ()
is uppercase character? IsUpperA() IsUppexW () IsUpper ()
: isupper () iswupper () isUpperT ()
is white-space character? IsSpacea() IsSpacei () IsSpace()
: isspace () iswspace () IsSpaceT ()
. . IsPrintA() IsPrintW() IsPrint()
?
is printable character? isprint () iswprint () IsPrintT ()
. . IsPunctA() IsPunctW() IsPunct()
?
is punctuation character? ispunct () i swpunct () TsPunctT ()
convert char to lowercase ToLowerA () ToLowerW () ToLower ()
tolower () towlower () ToLowerT ()
ToUpperA () ToUpperW () ToUpper ()
convert char to uppercase toupper () towupper () ToUpperT ()

. . IntToStrA() IntToStxrW () IntToStr ()
convert integer to string itoa() Citow() IntToStrT ()

. LongToStrA() LongToStrW() LongToStr ()
convert Iong to Strmg _ltoa() _ltow LongToStrT ()

Metagraphics Programming Guidelines

convert string to integer StrTolIntA() StrToIntW () StrToInt ()
atoi () _wtoi () StrToIntT ()
convert string to long StrZEISTT?A” Strj'wotl(-joln(g)w() SSttrrT'I'ooLI(.jorlnggT (())
format data to stdout 1; rrii“nttff"‘(()) 5;;22?; 8 PPrriinnttffT(()>
format data to file Ffl;rriinnttffA(()) g;;lllzivfi 8 FFPPrriinnttffT (())
format data to string, w/max fgi; i’l‘ﬁf‘f\f; fjni;i;;fi (()) SS;\IPE;riinnttffT(())
ot | a0 | e |)
format arg-ptr to str, w/max VSNPrintfa() VSNPrintfW() VSNPrintf ()
_vsnprintf() | _vsnwprintf() | VSNPrintfT()
get current working directory EZZSZ$ 8 _ctgzc:ccxl:;(()) GGeettcchde (())
open file Ffocije;f(()) 5?5:2: E z FFocgaeennT(())
read formatted from stdin Ssccaannffl'\(()) 3;22?}?8 SsccaannffT(())
read formatted from string SSSSC;;:;‘(()) :x‘:gi? 8 SSSSCcaanfT(())
read formatted from file FfSSC:;nffA(()) ii:zg:“f’ 8 FFSSCcaannffT(())
read character from stdin Ggeeic;aar:(()) g:tsg;?g 8 Giettcc;aarrT (())
read character from file (ZeettccA(()) 325328 GclettccT(())
read line from stdin Zeetts:(()) ;eeisvjfs(()) (;;eetst(())
read line from file Fngeetts:(()) ?g:;ﬁ:g FE(';c;etst(())
write character to stdout lzvljlttccl;laar:(()) ;‘:EES;;‘; 8 PlluttcchhaarrT (())
write character to file i‘LttCCA(()) gz:::;:8 Pf;uttccT(())
write string to stdout 1;‘;‘?:(()) joﬁsfs(()) ng': T()()
e

With our CHAR, WCHAR and TCHAR types, along with our character and string literal specifiers, and the string library
functions outlined above, we have a cohesive and portable system for handling characters and text on any ASCII or

Unicode platform. Also where needed, we have our type-specific functions both for handling ASCII-specific strings

on Unicode platforms, and vice-versa for handling Unicode-specific strings on ASCII platforms.

Metagraphics Programming Guidelines

a5

MetaWINDOW ASCII/Unicode Functions

Metagraphics MetaWINDOW provides both type-specific and generic functions for CHAR, WCHAR and TCHAR data
types. (For 16-bit wcHAR and TCHAR Unicode types, the associated . . .w and . . .T functions automatically perform

Unicode to glyph position translation.)

Support for earlier glyph-position strings is also provided:

ASCl Unicode Generic
type CHAR WCHAR TCHAR
get character width CharWidth () CharWidthw () CharWidthT ()
get string width StringWidth () StringWidthW () StringWidthT ()
draw character DrawChar () DrawCharW () DrawCharT ()
draw string DrawString() DrawStringW () DrawStringT ()

ASCII (8-bit)

Glyph [16-bit)

Generic (8/16)

type CHAR USHORT TCHAR
get character width CharwWidth () CharWidthlé6 ()
get string width StringWidth () StringWidthl6 ()

draw character

DrawChar ()

DrawCharl16 ()

draw string

DrawString ()

DrawStringl6 ()

TypeServer ASCII/Unicode Functions

Metagraphics TypeServer provides both type-specific and generic functions for CHAR, WCHAR and TCHAR data types.

(TypeServer C function names are prefixed with "tsStrike "; C++ method names are unique within the
tsCStrike class.)

ASCl

Unicode

Generic

type

CHAR

WCHAR

TCHAR

get char dimensions

GetCharExtentA ()

GetCharExtentW ()

GetCharExtentT ()

get string dimensions

GetStringExtentA()

GetStringExtentW ()

GetStringExtentT ()

draw character

DrawCharA ()

DrawCharW ()

DrawCharT ()

draw string

DrawStringA ()

DrawStringW ()

DrawStringT ()

mgstring.h/mgstring.c
Copies of mgstring.h and mgstring.c may be downloaded from the Metagraphics web site at:

46

http://www.metagraphics.com/pubs/mgstring.zip

Metagraphics Programming Guidelines

http://www.metagraphics.com/pubs/mgstring.zip

Appendix J - Resources

Programming Conventions

Books

e "Enough Rope To Shoot Yourself In The Foot — Rules for C and C++ Programming’, Allen Holub,
McGraw-Hill, ISBN: 0-07-029689-8

e "Code Complete”; Steve McConnel, Microsoft Press, ISBN: 1-55615-484-4

o '"Effective C++", Scott Meyers, Addison-Wesley, ISBN: 0-201-56364-9

e "More Effective C++", Scott Meyers, Addison-Wesley, ISBN: 0-201-63371-X

e "C++ Strategies and Tactics”, Robert Murray, Addison-Wesley, ISBN: 0-201-56382-7
o "Extreme Programming Installed’, Ron Jeffries, Addison-Wesley, ISBN: 0-201-70842-6
e "Extreme Programming Explained”; Kent Beck, Addison-Wesley, ISBN: 0-201-61641-6

Internet

e Taligent Guide to Developing Programs,
http://hpsalo.cern.ch/TaligentDocs/TaligentOnline/DocumentRoot/1.0/Docs/books/WM/WM_1.html

e Capability Maturity Model for Software, http://www.sei.cmu.edu/cmm/cmm.html
e Extreme Programming, http://www.extremeprogramming.org/

e Mozilla C++ Portability Guide, http://mozilla.org/hacking/portable-cpp.htm

Code Optimization

Profilers
e Microsoft Visual C++ Profiler

o Intel VTune

e NuMega TrueTime

e "Inner Loops” Rick Booth, Addison-Wesley, ISBN: 0-201-47960-5
o "DirectX, RDX, RSX and MMX Technology", Coelho & Hawash,, ISBN: 0-201-30944-1
e '"Zen of Code Optimization”; Michael Abrash, Coriolis Books, ISBN: 1-883577-03-9

Internet
e rec.games.programmer

e comp.graphic.api.opengl

e OpenGL and DirectX game programming List

Metagraphics Programming Guidelines

47

http://hpsalo.cern.ch/TaligentDocs/TaligentOnline/DocumentRoot/1.0/Docs/books/WM/WM_1.html
http://www.sei.cmu.edu/cmm/cmm.html
http://mozilla.org/hacking/portable-cpp.htm
http://mozilla.org/hacking/portable-cpp.htm

Windows Programming

Books

48

"Programming Applications for Microsoft Windows 2000, Fourth Edition”, Jeffrey Richter,
Microsoft Press, ISBN: 1-57231-996-8

"Programming Windows, Fifth Edition”; Charles Petzold, Microsoft Press, ISBN: 1-57231-995-X
"Advanced Windows”, Jeffrey Richter, Microsoft Press, ISBN: 1-57231-548-2

"Win32 Programming’, Brent Rector, Addison-Wesley, ISBN: 0-201-63492-9

"Windows 2000 Graphics API Black Book”, Damon Chandler, Coriolis Books, ISBN: 1-57610-876-7
"Windows 98 API Programming for Dummies”, Namir Shammas, IDG Books, ISBN: 0-7645-030-0
"Windows 98 — A Developer’s Guide’; Jeffrey Richter, M&T Books, ISBN: 1-55851-418-X
"Windows Internals", Matt Pietrek, , ISBN: 0-2001-62217-3

Metagraphics Programming Guidelines

	Naming Conventions
	Use Common Word Names
	If You Must Use Hungarian…
	Hungarian Prefixes
	Examples

	Types & Constants
	Constants & Macros
	Constants – Use enum or const Instead of #define
	Macros – Use inline Instead of #define for Functi
	#define Constants and Macros

	Variables
	Global Variables
	Member Variables
	Static Variables
	Local Variables
	Function Arguments

	Function and Class Names
	Avoid Microsoft and ANSI C Names
	C Application Functions
	C Library Functions
	C++ Application Classes
	C++ Library Classes
	C++ Class Methods

	Summary

	Basic Data Types
	
	Variable Size Data Types
	Fixed Size Data Types

	Formatting and Documentation
	Write Descriptive Comments In Blocks
	Document Defensively
	Document In More Detail Than You Think You Need
	Use An External .doc File If Necessary

	Align Comment Blocks Vertically
	Indents and Tabs
	Indent the Outer Block Of Each Function
	Comments And Variables Should Be At The Same Indent Level As the Code
	Indent Statements Associated With Flow-Control Statements

	Use Braces When There Are Multiple Lines Under A Flow-Control Statement
	Vertically Align Matching Braces

	Add A Closing Comment At The End Of Heavily Nested Code Blocks
	Add A Closing Comment At The End Of Each Function
	Add Identifying Comments At The Beginning and End Of Each File
	Neat Columns Are Easier To Read
	Keep Functions and Parameter Lists Together
	if Is Not A Function Call
	When Declaring Pointers, Use * Preceding The Symbol Name
	Minimize Creating Unnecessary Types

	General Programming
	Avoid Placing Assignment Statements (=) in Conditional Expressions
	Put the Shortest Part of an if/else On Top
	Keep Only Loop Control Items in the for Statement
	Avoid Declaring Variables Within Loop Control Statements
	Declare Variables At the Top Of Their Scope

	Use Debug ASSERT’s Liberally
	Check Function Return Codes
	Always Have a Default Case With switch and if/else if Statements
	Don’t Divide By Zero
	Initialize All Pointers
	Enhancing struct Compatibility
	Include a structSize Member In Structures
	Include a structSize Parameter For Functions Returning Structure Data

	Avoid Magic Numbers

	Code Optimization
	Count Down to Zero in for Loops
	Pre-Increment/Decrement Is Faster Than Post

	Unrolling Loops
	Keep Cache Usage In Mind
	Data Layout Is Important
	Profile Your Code
	
	Turn Off Incremental Linking

	Portability Guidelines
	Avoid Using Templates
	Don’t Using Exceptions
	Don’t Use Runtime Type Information \(RTTI\)
	Don’t Use Namespace Facility
	Don’t Put C++ Comments in C Code and Headers
	Make C Header Files Compatible with C and C++
	Manually Initialize Automatic Array Variables

	Windows Programming
	SourceSafe Files
	
	Check In:
	Don’t Check In:

	Visual C++ #pragma’s
	Compile at Maximum Warning Level 4
	Specify Default Libraries
	Compile-Time Messages

	Windows Timers and Timing
	Basic Timers – SetTimer\(\) and KillTimer\(\�
	Multimedia Timer – timeGetTime\(\)
	High Performance Timer – QueryPerformanceCounter�

	Drawing With GDI and DirectX
	Why use GDI?
	Why Not Use GDI?
	For Fastest Performance Use DirectX

	Computational Data Types
	
	Fixed-Point Data Types (defined in mgtypes.h)
	Fixed-Point Macros (defined in mgtypes.h)

	MRESULT Function Return Codes
	
	MRESULT Coding (defined in merror.h)

	Global Utility Functions and Macros
	
	General Utility Functions (defined in metincs.h)
	_ZeroMemory()
	_ZeroStruct()
	_InitStruct\(\) – Zero a structure and set the�
	countof() / _ArrayCount()
	_InRange()
	_FourCC()
	_ASSERT() / ASSERT()
	FAILED() / SUCCEEDED() / WARNINGFREE()

	Windows Utility Functions
	_MessageBox\(\) – Quick Windows MessageBox\(\
	_MSG – Windows #pragma message\(\) macro
	_HANDLE_DLGMSG\(\) – Message cracker handler f�

	Directory And Filename Conventions
	
	
	Valid Folder and File Name Characters
	Avoid Spaces in Folder and File Names
	Use Lowercase Folder and File Names

	C Source File Template
	C Header File Template
	C++ Source File Template
	C++ Header File Template
	Writing Code for ASCII & Unicode Language Portability
	
	Writing for ASCII & Unicode Language Portability
	CHAR, WCHAR and TCHAR types
	Literal Characters
	Literal Strings
	Literal ASCII CHAR Strings
	Literal Unicode WCHAR Strings
	Literal Generic TCHAR Strings

	String Format Conversion Functions
	String Library Functions
	MetaWINDOW ASCII/Unicode Functions
	TypeServer ASCII/Unicode Functions
	mgstring.h/mgstring.c

	Resources
	
	Programming Conventions
	Books
	Internet

	Code Optimization
	Profilers
	Books
	Internet

	Windows Programming
	Books

